Sleep is an essential component of health and wellness; yet, many people experience disruptions in their sleep-wake cycle that are severe enough to impair physiological and psychosocial functioning. Disorders of the sleep-wake cycle, such as obstructive sleep apnea, narcolepsy and hypersomnia, as well as associated syndromes such as cataplexy and excessive daytime sleepiness, represent significant health problems with short- and long-term consequences. Sleep disorders have been associated with metabolic effects, changes in circadian rhythms, proinflammatory responses, and psychiatric, neurologic, pulmonary, and cardiac conditions, as well as decrements in neurocognitive domains. Likewise, sleep disorders can negatively impact work performance and attendance, and may contribute to increased injuries and accidents, creating a significant economic burden, as well as increased health care utilization and more frequent and longer hospitalizations.

Given the significant impact of sleep disorders, the identification and implementation of safe, effective therapies is paramount. The CME Outfitters Sleep Disorders Hub is designed to provide clinicians with the latest clinical practice guidelines, diagnostic strategies and tools, and scientific updates on current and emerging therapies to optimize the management of sleep disorders. In addition, the Sleep Disorders Hub also provides patient education tools to empower patients to make informed decisions about their care.

CME/CE activities

Don’t Snooze on the Latest Evidence on Excessive Daytime Sleepiness in OSA and Narcolepsy: An Expert-Guided Tour of the SLEEP 2019 Annual Meeting


Participate Now!
In this CME Outfitters dynamic, interactive infographic, expert faculty discuss the impact of EDS on daily functioning, highlight the efficacy of current and novel treatment strategies, and provide expert commentary assessing the data for novel treatments.

Case Simulations in the Detection of OSA: Patients That Keep You Up At Night


Participate Now!
This CME Outfitters decision-tree medical simulation features guidance, insights, and evidence from expert faculty regarding tools such as the Epworth Sleepiness Scale (ESS) and how to incorporate it into routine practice in order to increase the rate of detection of persistent excessive sleepiness in patients with OSA.

Case Simulations in the Management of Persistent Excessive Sleepiness in OSA: Patients That Keep You Up At Night


Participate Now!
In this CME Outfitters decision-tree medical simulation, expert faculty focus on residual ES in patients with OSA and narcolepsy with patient case simulations that explore the complexity of managing residual ES and provides the latest clinical updates on current and emerging therapies, strategies to facilitate patient engagement, and shared decision-making to develop comprehensive treatment strategies for long-term, effective management.

Case Simulations in the Detection and Management of Narcolepsy: Patients That Keep You Up At Night


Participate Now!
In this CME Outfitters decision-tree medical simulation, expert faculty will highlight evidence-based tools to facilitate the recognition of residual ES and provide clinicians with the latest clinical updates on the effectiveness of current and emerging therapies that promote symptom resolution and restoration of function.
Digital Health Tools
  • American Academy of Sleep Medicine (AASM) Sleep TM app, a mobile app that directly connects patients to sleep medicine professionals and accredited sleep centers through the AASM SleepTM telemedicine system. The app provides patients convenient access to sleep medicine services on their mobile devices. – Click Here
  • WatchPAT, an FDA-approved portable sleep apnea diagnostic device that uses finger-based physiology and innovative technology to enable simple and accurate OSA testing while avoiding the complexity and discomfort associated with traditional air-flow based systems. – Click Here
  • Sleep Tuner, FDA-registered sleep sensor, worn on the forehead, to measure blood oxygenation, heart rate, sleep position, and stopped breathing events. It is designed to offer the accuracy of medical sleep studies without the cost or inconvenience. – Click Here
  • ResApp, uses a smartphone to detect sleep apnea by sound, delivering a highly-scalable, accurate, and easy-to-use screening test. It uses a machine-learning algorithm to detect the severity of sleep apnea by the sound of a person’s breathing and snoring. A user can put the smartphone next to their bed and it will record their sleeping. – Click Here
  • DeepHeart, a deep neural network technology that can detect hypertension and sleep apnea. – Click Here
Patient Resources

Infographics

Healthy Sleep Duration Poster

Stop the Snore Infographic

Little Sleep, Big Costs Infographic

Sleep Apnea Hurts Hearts

Websites

Sleep Education (from the American Academy of Sleep Medicine): http://www.sleepeducation.org

National Healthy Sleep Awareness Project (from the American Academy of Sleep Medicine):  http://www.sleepeducation.org/healthysleep

National Sleep Foundation: https://www.sleepfoundation.org

American Sleep Association: https://www.sleepassociation.org

National Heart, Lung, and Blood Institute-National Institutes of Health:  https://www.nhlbi.nih.gov/health-pro/resources/sleep

Patient Organizations

American Sleep Apnea Association: http://www.sleepapnea.org

Circadian Sleep Disorders Network: http://www.circadiansleepdisorders.org

Narcolepsy Network: http://narcolepsynetwork.org

Restless Legs Syndrome Foundation: https://www.rls.org

Wake Up Narcolepsy: http://www.wakeupnarcolepsy.org/

Reading Room

Thorpy MJ, Shapiro C, Mayer G, et al. A randomized study of solriamfetol for excessive sleepiness in narcolepsy. Ann Neurol. 2019;85(3):359-370. Download PDF

Abad VC. An evaluation of sodium oxybate as a treatment option for narcolepsy. Expert Opin Pharmacother. 2019;20(10):1189-1199. Available at https://www.ncbi.nlm.nih.gov/pubmed/31136215.

Black J, Swick T, Bogan R, et al. Impact of sodium oxybate, modafinil, and combination treatment on excessive daytime sleepiness in patients who have narcolepsy with or without cataplexy. Sleep Med. 2016;24:57-62. Download PDF

Schweitzer PK, Rosenberg R, Zammit GK, et al. Solriamfetol for Excessive Sleepiness in Obstructive Sleep Apnea (TONES 3). A Randomized Controlled Trial. Am J Respir Crit Care Med. 2019;199(11):1421-1431. Available at https://www.ncbi.nlm.nih.gov/pubmed/30521757.

Martinez-Garcia MA, Campos-Rodriguez F, Barbé F, et al. Precision medicine in obstructive sleep apnoea. Lancet Respir Med. 2019 May;7(5):456-464. Available at https://www.ncbi.nlm.nih.gov/pubmed/30987857.

Inoue Y, Miki M, Tabata T. Findings of the Maintenance of Wakefulness Test and its relationship with response to modafinil therapy for residual excessive daytime sleepiness in obstructive sleep apnea patients adequately treated with nasal continuous positive airway pressure. Sleep Med. 2016;27-28:45-48. Available at https://www.ncbi.nlm.nih.gov/pubmed/27938918.

Scheer D, Schwartz SW, Parr M, et al. Prevalence and Incidence of Narcolepsy in a U.S. Health Care Claims Database, 2008-2010. Sleep. 2019. Epub ahead of print]. Available at https://www.ncbi.nlm.nih.gov/pubmed/31004158.

Thorpy MJ, Hiller G. The Medical and Economic Burden of Narcolepsy: Implications for Managed Care. Am Health Drug Benefits. 2017;10(5):233-241. – Download PDF

Hein M, Lanquart JP, Loas G, et al. Prevalence and risk factors of excessive daytime sleepiness in major depression: A study with 703 individuals referred for polysomnography. J Affect Disord. 2019 Jan 15;243:23-32. Available at https://www.ncbi.nlm.nih.gov/pubmed/30223136.

Kallweit U, Bassetti CL. Pharmacological management of narcolepsy with and without cataplexy. Expert Opin Pharmacother. 2017;18(8):809-817. Available at https://www.ncbi.nlm.nih.gov/pubmed/28443381.

Mayer G, Piazzi G, Iranzo A, et al. Long-term compliance, safety, and tolerability of sodium oxybate treatment in patients with narcolepsy type 1: a post-authorization, noninterventional surveillance study. Sleep. 2018;41(9). – Download PDF

Szabo ST, Thorpy MJ, Mayer G, et al. Neurobiological and immunogenetic aspects of narcolepsy: Implications for pharmacotherapy. Sleep Med Rev. 2019;43:23-36. – Download PDF

Gentina T, Bailly S, Jounieaux F, et al. Marital quality, partner’s engagement and continuous positive airway pressure adherence in obstructive sleep apnea. Sleep Med. 2019;55:56-61. Available at https://www.ncbi.nlm.nih.gov/pubmed/30771736.

Schöbel C, Knorre S, Glos M, et al. Improved follow-up by peripheral arterial tonometry in CPAP-treated patients with obstructive sleep apnea and persistent excessive daytime sleepiness. Sleep Breath. 2018 Dec;22(4):1153-1160. Available at https://www.ncbi.nlm.nih.gov/pubmed/29956104.

Avellar AB, Carvalho LB, Prado GF, et al. Pharmacotherapy for residual excessive sleepiness and cognition in CPAP-treated patients with obstructive sleep apnea syndrome: A systematic review and meta-analysis. Sleep Med Rev. 2016;30:97-107. Available at https://www.ncbi.nlm.nih.gov/pubmed/27865102.

Gasa M, Tamisier R, Launois SH, et al. Residual sleepiness in sleep apnea patients treated by continuous positive airway pressure. J Sleep Res. 2013;22(4):389-397. – Download PDF

Inoue Y, Takasaki Y, Yamashiro Y. Efficacy and safety of adjunctive modafinil treatment on residual excessive daytime sleepiness among nasal continuous positive airway pressure-treated Japanese patients with obstructive sleep apnea syndrome: a double-blind placebo-controlled study. J Clin Sleep Med. 2013;9(8):751-757. – Download PDF

Sukhal S, Khalid M, Tulaimat A. Effect of Wakefulness-Promoting Agents on Sleepiness in Patients with Sleep Apnea Treated with CPAP: A Meta-Analysis. J Clin Sleep Med. 2015;11(10):1179-1186. – Download PDF