
What the Future Holds for NASH:

An Augmented Reality Look into Disease Staging and Targeted Therapies

Presented for attendees of the 70th AASLD Annual Meeting. This event/function is sponsored by CME Outfitters, LLC and supported by Intercept Pharmaceuticals, Inc. This is not an official function/event of the American Association for the Study of Liver Diseases.

#futureofNASH

Provided by: CME

Zobair M. Younossi, MD, MPH, FACP, FACG, AGAF, FAASLD (Chair)

Chairman, Department of Medicine Professor of Medicine, Inova Fairfax Hospital Fairfax, VA

Contraction of the second seco

Rohit Loomba, MD, MHSc

Director, NAFLD Research Center Director of Hepatology Professor of Medicine, Vice Chief, Division of Gastroenterology University of California, San Diego San Diego, CA

Mazen Noureddin, MD, MHSc

Director, Fatty Liver Program Division of Digestive & Liver Diseases Comprehensive Transplant Center Cedars Sinai Medical Center Los Angeles, CA

Learning Objective

Describe the role of immune, inflammatory, and metabolic pathways in the pathogenesis of NASH.

Contraction of the second seco

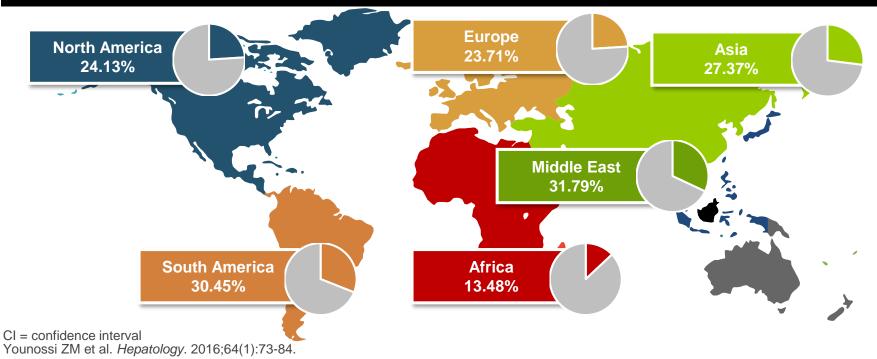
59-year-old Mexican American male

- Referred from PCP because of elevated liver enzymes
- Statins were stopped 3 months ago
- History of T2DM for 5 years
- History of dyslipidemia for 2 years
- Family history: Mother had diabetes and father had HTN
- **Social History:** He doesn't exercise, but walks the dog daily
 - Works as attorney
 - Drinks 3-4 beers on weekends and two glasses of wine with steak during dinners with clients

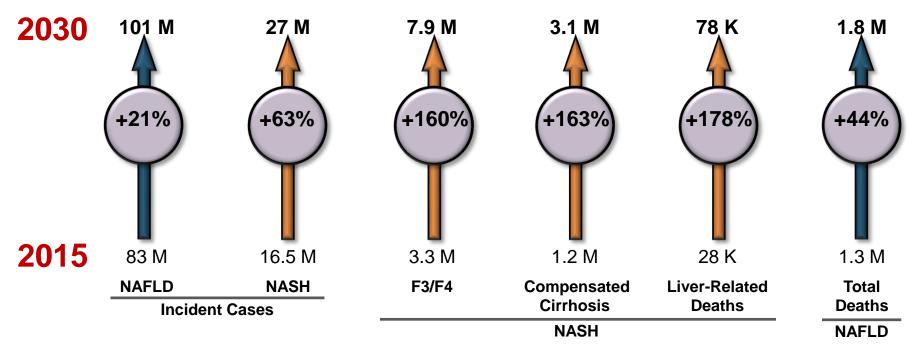
PCP = primary care physician; T2DM = type 2 diabetes mellitus; HTN = hypertension.

George (cont.)

- Symptoms: Has some right upper quadrant discomfort
- **Medications:** Metformin 500 mg po twice a day and fish oil
- **Exam** was normal except for central obesity
 - BMI of 33 kg/m2

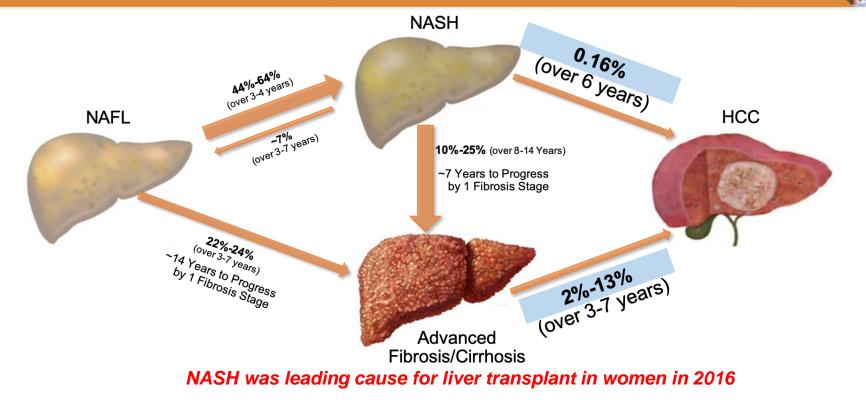

Todays' Laboratory Values

ALT	60 U/L
AST	65 U/L
Total Bilirubin	0.8 mg/dL
Albumin	4.0 g/dL
Platelets	180,000/µL
LDL	100 mg/dL
HDL	40 mg/dL
Triglyceride	240 mg/dL
Hgb A1C	6.9


ALT = alanine aminotransferase; AST = aspartate aminotransferase; LDL = low-density lipoprotein cholesterol; HDL = high-density lipoproteins; Hgb = hemoglobin.

Why Do We Have to Treat NAFLD and NASH? Disease Burden: Prevalence

- Global prevalence of NAFLD is 25.24% (95% CI: 22.10-28.65)
- Prevalence of NASH in general population is estimated between 1.5% and 6.45%


Changing Burden of NAFLD/NASH in The US

NAFLD disease progression model (Markov model key input prevalence): 2015-2030: obesity (35.1% to 42.19%) and diabetes (11.4% to 22.7%). 2015: NAFLD=30% of obesity/diabetes; NASH=20% of NAFLD; 20% of NASH with ≥F3. Mortality adjusted for CVD; HCC progression calibrated to SEER data.

NAFLD = non-alcoholic fatty liver disease; NASH = nonalcoholic steatohepatitis. Estes C, et al. *Hepatology*. 2018;67:123-133.

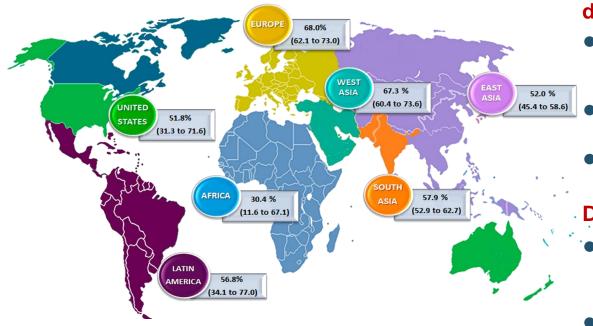
Natural History of NAFLD/NASH

HCC = hepatocellular carcinoma Goh GB, et al. *Dig Dis Sci.* 2016;61:1226-1233; Singh S, et al. *Clin Gastroenterol Hepatol.* 2015;13:643-654; Noureddin-Vipani, et al. *Am J Gastroenterol.* 2018;113(11):1649-1659.

The 20% Rule for Progression in F3/4 NASH

Key predictors of progression to cirrhosis

 Noninvasive fibrosis scores: ELF ≥ 9.8, Platelet count, FIB-4/NFS/APRI Key predictors of decompensation/progression


- Liver function: MELD, Childs Push status, albumin
- Portal hypertension: Baseline HVPG ≥ 10 mm Hg, oesophageal varices
- Non-invasive fibrosis scores: ELF ≥ 11.3, FIB-4/NFS/APRI

ELF = enhanced liver fibrosis; FIB = fibrosis; NFS = NAFLD Fibrosis Score; APRI = AST to Platelet Ratio Index;

MELD = model for end-stage liver disease; HVPG = hepatic venous pressure gradient.

Loomba R, Adams LA. Hepatology. 2019 Sep 13. [Epub ahead of print]; Sanyal AJ, et al. Hepatology. 2019 Apr 16. [Epub ahead of print].

Disease Burden In Patients with Diabetes

Systematic review of 49,419 with diabetes in 22 countries

- Overall global NAFLD prevalence among diabetics is 55.5%
- Overall prevalence of NASH in biopsied diabetics is 67.3%
- Overall prevalence of advanced fibrosis (fibrosis ≥ F3) 17.2%

Diabetes makes everything worse

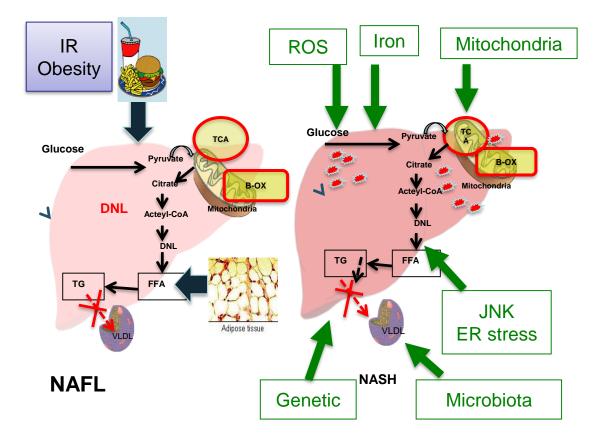
- 8X increase in number of patients who progress from NASH to HCC
- ~2X increase in mortality in patients with cirrhosis, HCC, or liver transplant

Golabi P, et al. Medicine. 2018;97(13):e0214; Younossi ZM, et al. Nat Rev Gastroenterol Hepatol. 2018;15(1):11-20; Younossi ZM et al. Hepatology. 2018;(1):349-360.

Diet Associations with NAFLD in an Ethnically Diverse Population the Multiethnic Cohort

(g/1,000 kcal/day)	NAFLD No Cirrhosis	NAFLD With Cirrhosis
Q 1 st vs. 4 th	OR	OR
	(95% CI)	(95% CI)
Cholesterol		
≤ 75.4	1.00 (ref.)	1.00 (ref.)
> 121.4	1.09 (0.96-1.23)	<mark>1.52 (1.15-2.01)</mark>
P-value for trend	0.0889	<mark>0.0018</mark>
Fiber		
≤ 8.5	1.00 (ref.)	1.00 (ref.)
> 14.0	<mark>0.86 (0.75-0.98)</mark>	0.75 (0.55-1.02)
P-value for trend	<mark>0.0123</mark>	0.1018

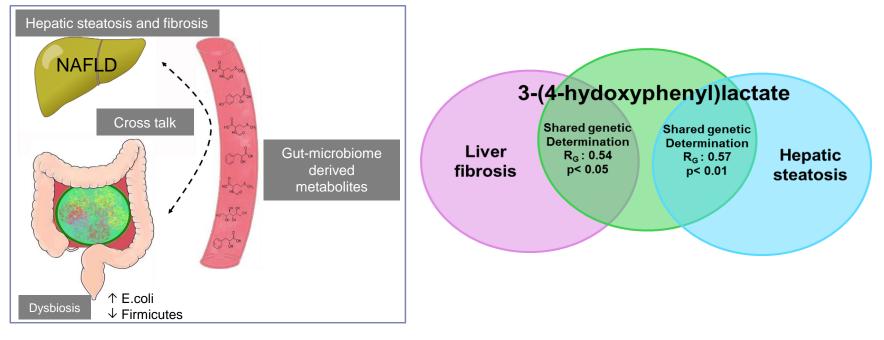
FFQ = Food Frequency Questionnaire; kcal = kilocalorie. Noureddin M, et al. *Hepatology.* 2019 Sep 25. [Epub ahead of print].


- Nested case-control
- 2,974 NAFLD cases
 - 518 with cirrhosis
 - 2,456 without cirrhosis
- 29,474 matched controls
- Cases identified using Medicare claims ICD9/10
- Controls individually matched to cases on birth year, sex, ethnicity
- FFQ administered

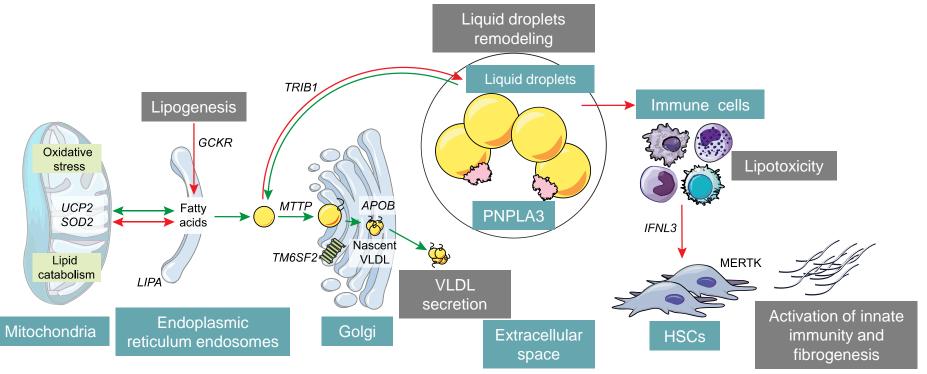
Diet Associations with NAFLD in an Ethnically Diverse Population the Multiethnic Cohort (cont.)

(g/1,000 kcal/day)	NAFLD No Cirrhosis	NAFLD With Cirrhosis
Q 1 ST vs. 4 th	OR (95% CI)	OR (95% CI)
Total red meat		<u> </u>
≤ 13.7	1.00 (ref.)	1.00 (ref.)
> 34.0	1.10 (0.97-1.25)	<mark>1.43 (1.08-1.90)</mark>
P-value for trend	0.1190	0.0121
Red unprocessed meat		
≤ 9.3	1.00 (ref.)	1.00 (ref.)
> 24.1	1.10 (0.97-1.25)	<mark>1.52 (1.15-2.01)</mark>
<i>P</i> -value for trend	0.1223	<mark>0.0033</mark>
Processed red meat		
≤ 3.0	1.00 (ref.)	1.00 (ref.)
> 10.0	<mark>1.17 (1.03-1.32)</mark>	1.31 (0.99-1.71)
<i>P</i> -value for trend	0.0097	0.1123
Total poultry		
≤ 11.4	1.00 (ref.)	1.00 (ref.)
> 27.6	<mark>1.19 (1.05-1.35)</mark>	1.03 (0.79-1.35)
P-value for trend	<mark>0.0028</mark>	0.7717

Noureddin M, et al. Hepatology. 2019 Sep 25. [Epub ahead of print].


NAFLD: Pathogenesis

DNL = differential non-linearity; ER = endoplasmic reticulum; FFA = free fatty acid; IR = insulin resistance; JNK = c-Jun N-terminal kinases; ROS = reactive oxygen species; TCA = trichloroacetic acid; TG = thyroglobulin; VLDL = very low density lipoprotein. Noureddin M, et al. *Exp Bio Med.* 2015;240(6):809-820.


Gut-Liver Axis and Microbial Metabolites in Advanced Fibrosis Versus Early NAFLD

Using a twin-familial cohort and patients with biopsy-proven NAFLD, comparing advanced fibrosis (stage 3-4) versus stage 0-2 fibrosis using metagenomic sequencing

Caussy C, et al. Hepatology. 2018 Mar 23. [Epub ahead of print].

Genetics and Epigenetics of NAFLD and NASH

APOB = apolipoprotein B; GCKR = glucokinase regulatory protein; HSCs = hematopoietic stem cell transplantation; IFNL3 = interferon lambda 3; MERTK = MER proto-oncogene, tyrosine kinase; MTTP = microsomal triglyceride transfer protein; PNPLA3 = patanin-like phospholipase domain-containing protein 3; SOD2 = superoxide dismutase 2; TM6SF2 = transmembrane 6 superfamily member 2; TRIB1 = tribbles homolog 1; UCP2 = uncoupling protein 2. Eslam M, et al. *J Hepatol.* 2018;68(2):268-279.

In what proportion of at-risk patients do you screen for NAFLD?

- A. 0%
- **B.** 1-25%
- C. 26-50%
- D. 51-75%
- E. 76-100%

Learning 2 Objective

Select appropriate non-invasive and invasive modalities for the identification of advanced fibrosis in patients with NAFLD.

#futureofNASH

Clinical Presentation of NASH

Liver biopsy

- Diagnosis of NASH requires the <u>joint</u> presence of steatosis, ballooning and lobular inflammation
- Diagnostic gold standard

Few symptoms

- Often asymptomatic
- Nonspecific symptoms (eg, right upper quadrant discomfort or fatigue)

Changes in liver enzymes

- Mildly elevated with ALT predominance in most patients
- Some patients may have elevated alkaline phosphatase

Aetiologies

- No significant alcohol consumption
- No competing etiologies for hepatosteatosis
- No coexisting causes of chronic liver disease

European Association for the Study of the Liver, et al. J Hepatol 2016;64:1388–1402; Stengel JZ, Harrison SA. Gastroenterol Hepatol 2006;2:440–449; Chalasani N, et al. Hepatology 2018;67:328-357.

Audience Q&A

Indications for Liver Biopsy

- Obesity
- ↑ TG
- Low HDL
- Impaired glucose tolerance
- High AST/ALT ratio

Low platelet count or albumin level

- Cholecystectomy or bariatric surgery
- Old age
- Diabetes
 - Family history

Disadvantages of biopsies

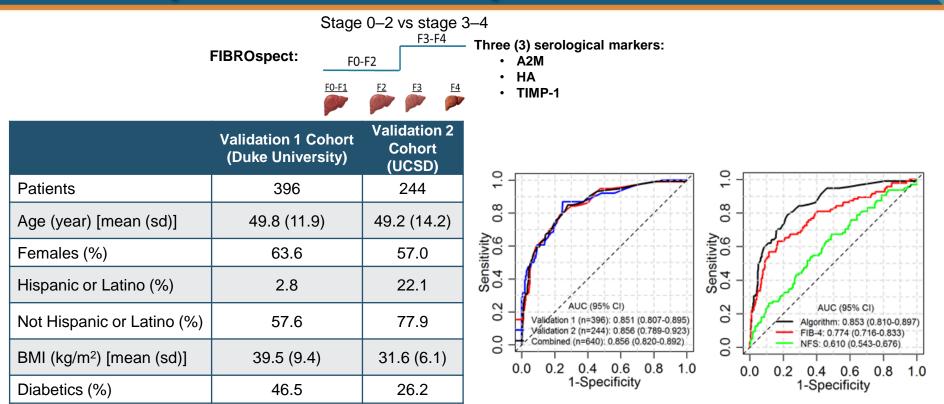
- Sampling variability
- Pain
- Infection
- Bleeding
- Perforation
- Impractical for
 population management
- Death

Non-invasive Diagnosis of NASH and NAFLD

Clinical/lab tests

- NAFLD fibrosis score
- FIB-4 index
- BARD score
- AST:ALT ratio
- AST: platelet ratio index
- Fibrotest
- Hepascore
- Fatty liver index
- Index of NASH

Imaging


- Ultrasound
- Computer tomography
- Magnetic resonance imaging
- Magnetic resonance spectroscopy
- Transient elastography
- Acoustic radiation force impulse
- Magnetic resonance elastography

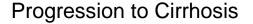
Biomarkers

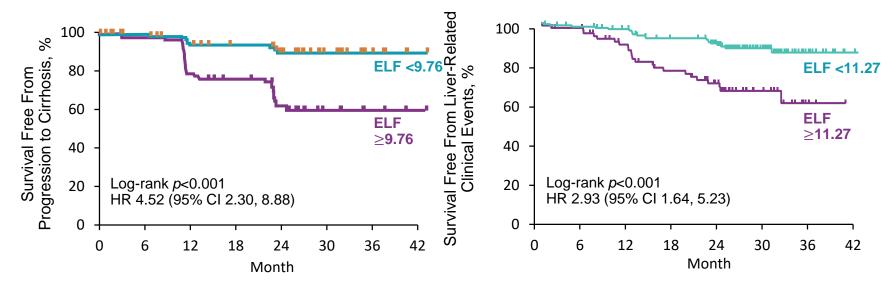
- Hyaluronic acid
- CK-18
- Fucosylated haptoglobin (Fuc-Hpt)
- Macroglobulin-2 binding protein (Mac-2bp)
- Fuc-Hpt + Mac-2bp
- ELF score
- FIBROSpect®

Papagianni M, et al. World J Hepatol. 2015;7:638–48; Golabi P, et al. Expert Rev Gastroenterol Hepatol. 2016;10:63–71.

FIBROSpect® NASH is Superior to FIB-4 and NFS

Fibrospect® NASH score of 17 or higher is associated with advanced fibrosis in NAFLD

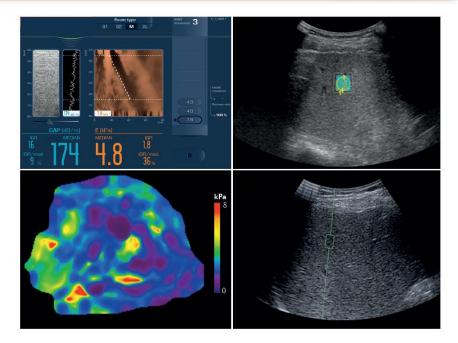

A2M = alpha-2-macroglobulin. Loomba R, et al. *Clin Gastroenterol Hepatol.* 2019. (in press).


In a patient with NAFLD and bridging fibrosis, what cutpoint predicts high risk of progression to cirrhosis?

- A. ELF ≥ 8.8
- B. ELF ≥ 9.8
- C. ELF ≥ 11.3
- D. ELF ≥ 14.0

ELF Predicts Progression More Accurately than Biopsy: Phase 2 Simtuzumab in NASH and F3–F4

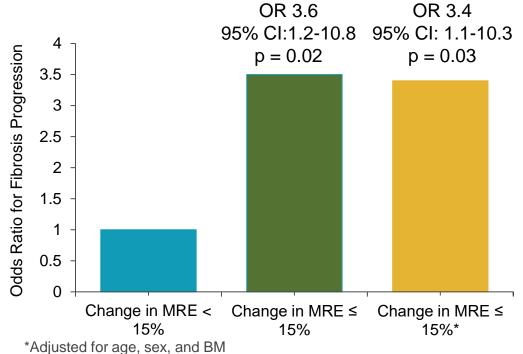
Liver-Related Clinical Events



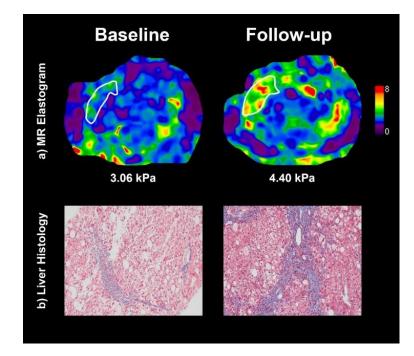
Higher baseline ELF and greater change in ELF were associated with increased risk of progression to cirrhosis and liver-related clinical events

Patients with NASH and bridging fibrosis (n=219) or compensated cirrhosis (n=258) enrolled in two Phase 2b SIM studies. CI = confidence interval; ELF = enhanced liver fibrosis; HR = hazard ratio. Patel J, et al. *Therap Adv Gastroenterol.* 2016;9(5):692-701.

Elastography-Based Methods to Estimate Liver Stiffness


- VCTE (FibroScan) is most widely used
 - ≥10 images are required
 - Accurate for stages F3–4
 - Can estimate steatosis when used with CAP
- SWE/ARFI can be used to measure stiffness in a single ROI
- MRE measures stiffness across multiple ROIs

ARFI = acoustic radiation force impulse; CAP = controlled attenuation parameter; MRE = magnetic resonance elastography; ROI = region of interest; SWE = shear wave elastography.


Tapper EB, Loomba R. Nat Rev Gastroenterol Hepatol. 2018;15:274-282.

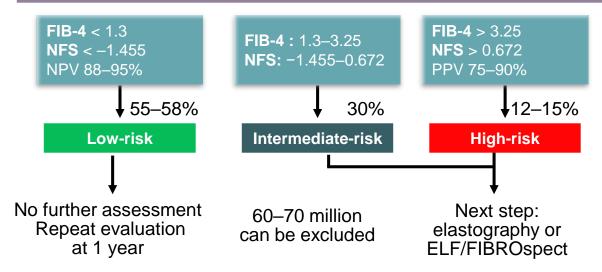
15% Increase in MRE is Associated with Higher Odds of Fibrosis Progression

MRE = Magnetic resonance elastography

Ajmera VH, et al. Hepatology. 2019 Sep 25. [Epub ahead of print].

Which Test is Better?

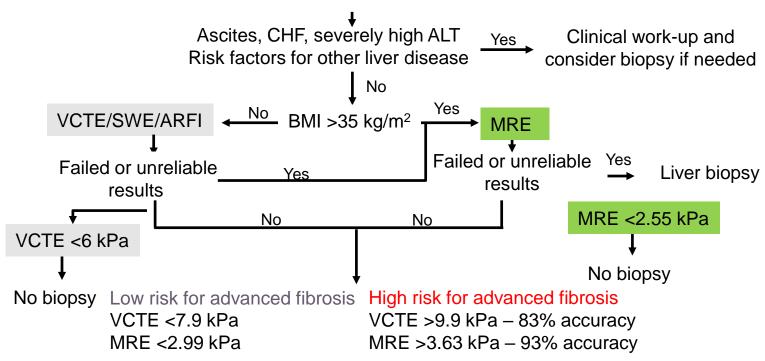
- FIB-4 is better than the rest of CPR
- VCTE is better than FIB-4
- MRE is better than VCTE


Efficiency of combining biomarkers

FIB-4 followed by ELF and/or VCTE (FibroScan) nearly eliminated the need for liver biopsy and accurately identified patients with advanced fibrosis due to NASH with misclassification rates similar to liver biopsy

Optimizing Risk Management

100 million Americans with suspected NAFLD


Rule-out advanced fibrosis (FIB-4 or NAFLD Fibrosis Score)

NPV = negative predictive value. Tapper EB, Loomba R. *Nat Rev Gastroenterol Hepatol.* 2018;15:274-282.

Elastography in Assessing Advanced Fibrosis

CHF = congestive heart failure.

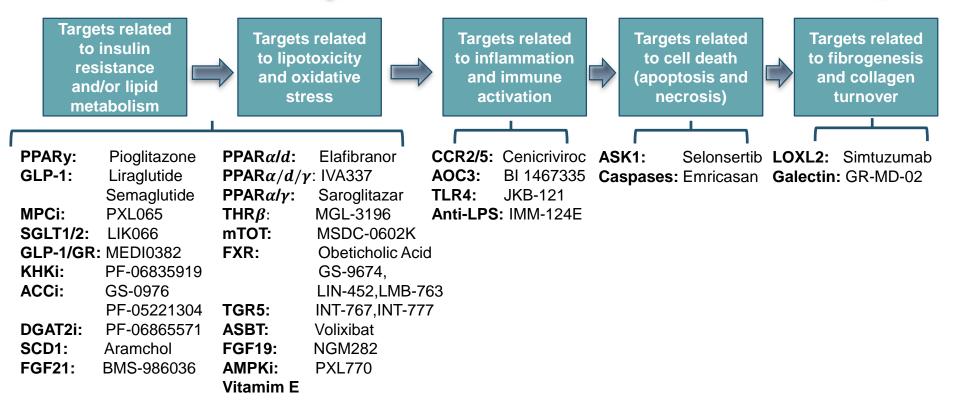
Tapper EB, Loomba R. Nat Rev Gastroenterol Hepatol. 2018;15:274–282.

Caveats Associated with Available Modalities

- Transient elastography, ARFI, and other ultrasound-based test have limitations:
 - Obesity
 - Ascites
 - Acute inflammation
 - Cirrhosis

- MRE improves upon all except
 - Iron overload
 - Acute inflammation

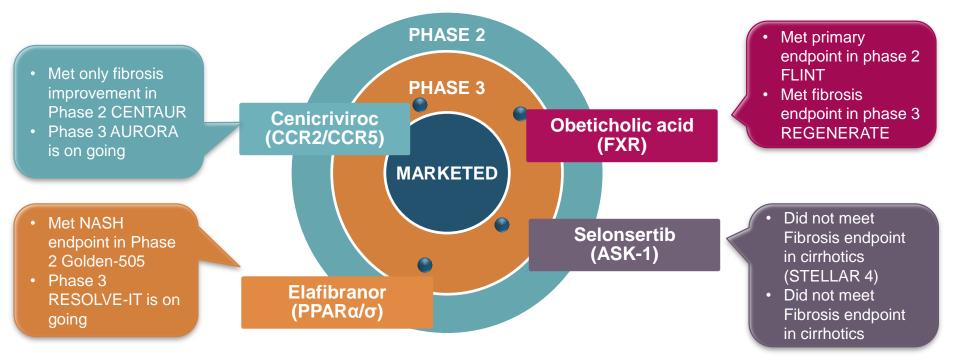
Audience Q&A



Learning 3 Objective

Evaluate the efficacy of emerging therapies for improving fibrosis in patients with NASH.

If Standard Treatment is Unsuccessful, What Future Options Exist?

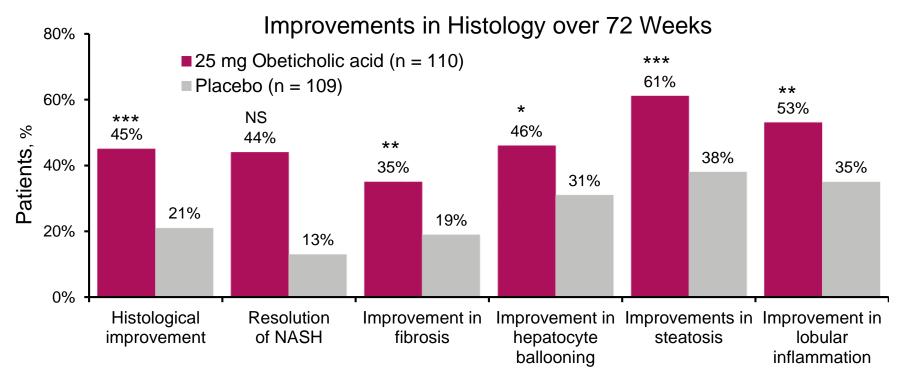


Younossi ZM, et al. *Hepatology.* 2018;68(1):361-371.

How often do you enroll patients with NASH in clinical trials?

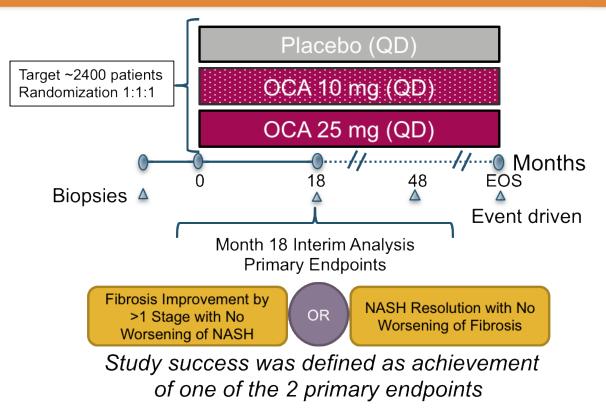
- A. Never
- B. 1-25% of the time
- C. 26-50% of the time
- D. 51-75% of the time
- E. 76-100% of the time

Regimens in Phase 3 Clinical Trials for Treatment of NASH

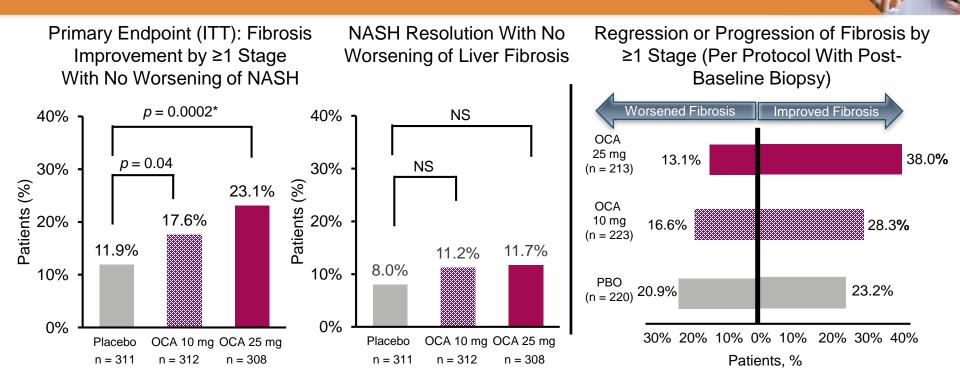


ASK-1 = apoptosis signal-regulating kinase 1; CCR = chemokine (C-C motif) receptor; PPAR = peroxisome proliferator-activated receptors; FXR = farnesoid X receptor. Younossi ZM, et al. *Hepatology*. 2018;68(1):361-371.

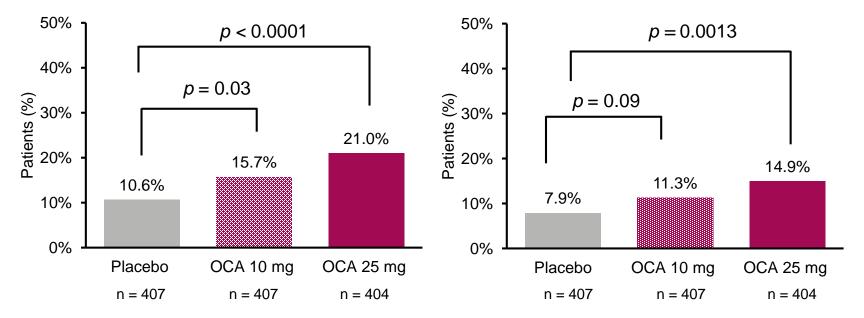
Augmented Reality


Obeticholic Acid: FLINT Study

NS = not significant; *P value ≤ 0.05 ; ** P value ≤ 0.01 ; *** P value ≤ 0.001 .

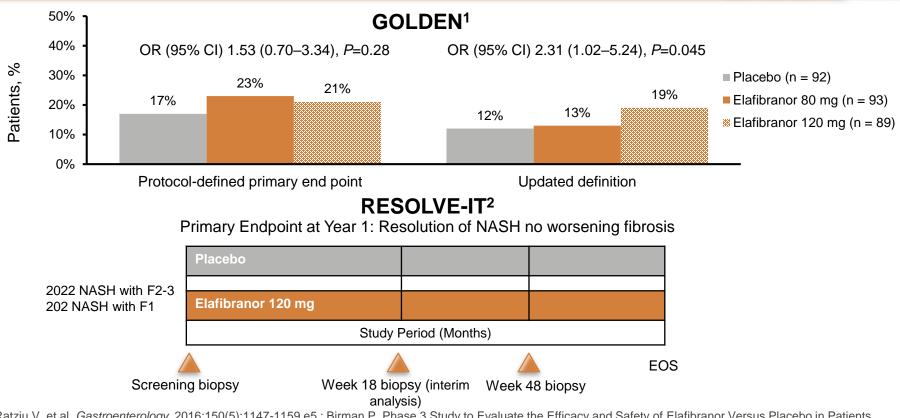

Neuschwander-Tetri BA, et al. Lancet. 2015;385(9972):956-965; Younossi Z, et al. International Liver Congress 2019; April 10-14, 2019. Vienna, Austria. Abstract No. GS-06.

Obeticholic Acid: REGENERATE Design

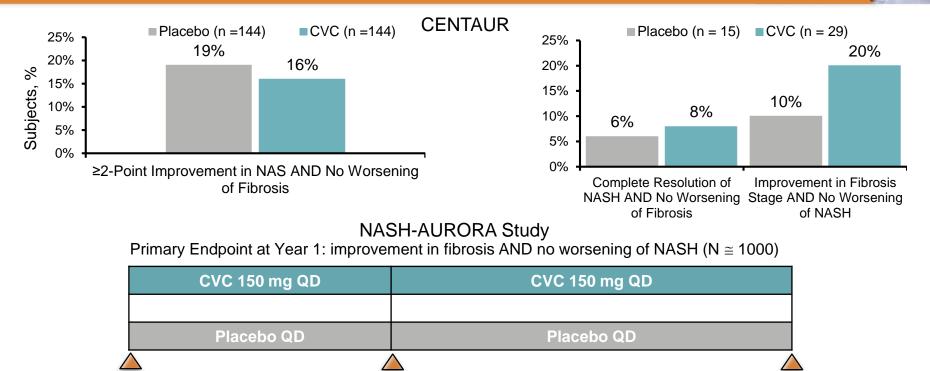


Ratziu V, et al. *Contemp Clini Trials* 019 Sep;84:105803. doi: 10.1016/j.cct.2019.06.017. Epub 2019 Jun 29.; Younossi Z, et al. International Liver Congress 2019; April 10-14, 2019. Vienna, Austria. Abstract No. GS-06.

Obeticholic Acid: REGENERATE Results



*Statistically significant in accordance with the statistical analysis plan agreed with the FDA Younossi Z, et al. International Liver Congress 2019; April 10-14, 2019. Vienna, Austria. Abstract No. GS-06. Fibrosis Improvement ≥1 Stage With No Worsening of NASH: Expanded ITT Population NASH Resolution With No Worsening of NASH: Expanded ITT Population


Sanyal A, et al. Abstract #34 Presented at The Liver Meeting 2019, November 8-12, 2019, Boston, MA.

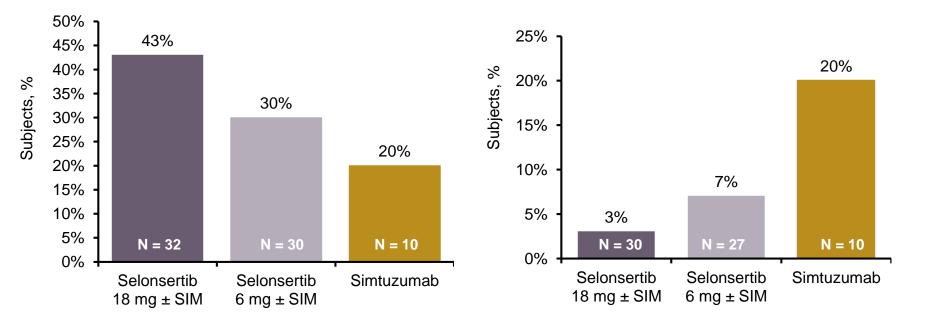
Elafibranor: GOLDEN and RESOLVE-IT 505-Peroxisome Proliferator-Activated Receptors (PPAR α/δ Pathways)

Ratziu V, et al. *Gastroenterology*. 2016;150(5):1147-1159.e5.; Birman P. Phase 3 Study to Evaluate the Efficacy and Safety of Elafibranor Versus Placebo in Patients With Nonalcoholic Steatohepatitis (NASH) (RESOLVE-IT). <u>ClinicalTrials.gov</u> Identifier: NCT02704403. 2016.

Cenicriviroc: CENTAUR and NASH-AURORA

Screening biopsy

Biopsy at month 12

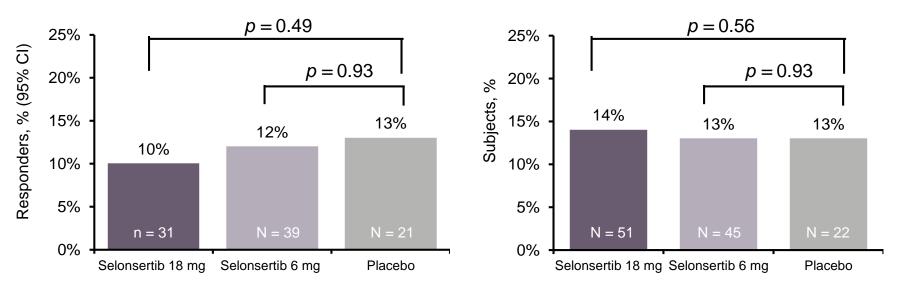

Biopsy at month 60

Ratziu V, et al. The International Liver Conference 2018; April 11-15, 2018. Paris, France. Abstract No. GS-002; Friedman SL, et al. *Hepatology.* 2018;67(5):1754-1767; Martins EB. AURORA: Phase 3 Study for the Efficacy and Safety of CVC for the Treatment of Liver Fibrosis in Adults With NASH. Clinical Trials.gov Identifier: NCT03028740.

Selonsertib: Phase 2 Study

Fibrosis Improvement (≥1 stage from baseline)

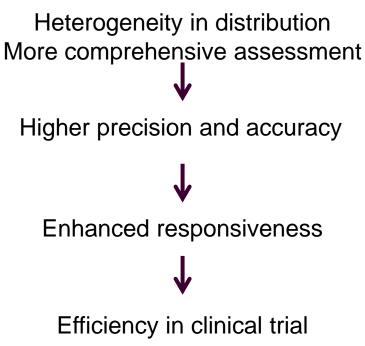
Progression to Cirrhosis at Week 24



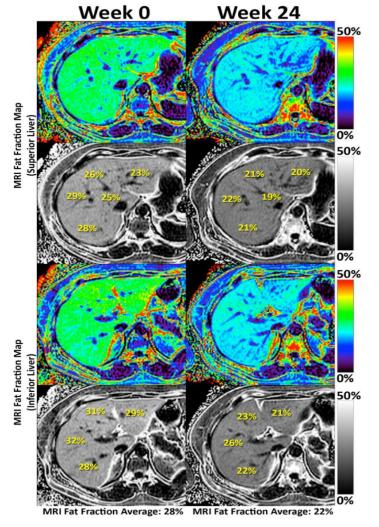
Selonsertib: STELLAR-3 and STELLAR-4

Fibrosis Improvement Without Worsening of NASH

STELLAR-3

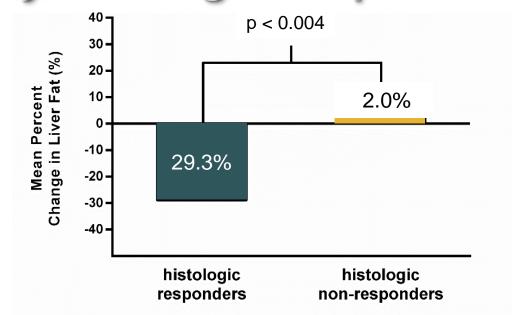

Harrison SA, et al. Abstract #64 Presented at The Liver Meeting 2019, November 8-12, 2019, Boston, MA.

Liver Fat Changes in Early Phase Trials


#futureofNASH

Liver Fat-Mapping Before and After Treatment

Why do we need to co-localize?


Loomba R, et al. Hepatology. 2015;63(1):10-12.

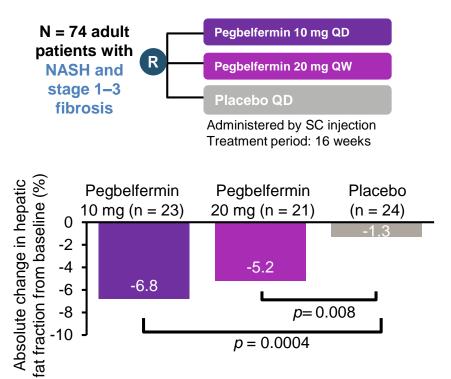
What is a clinically significant reduction in MRI-PDFF?

#futureofNASH

Change in MRI-PDFF Estimated Liver Fat Content by Histologic Response

30% reduction in MRI-PDFF may be associated with a 2-point improvement in NAFLD Activity Score (NAS): FLINT Trial

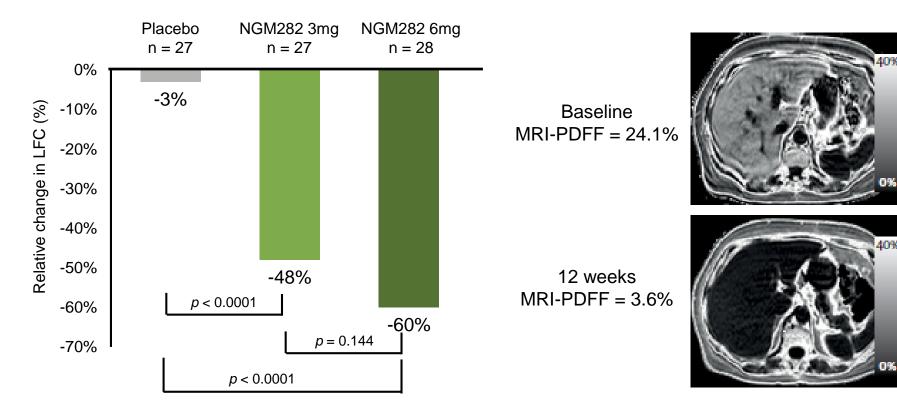
Patel J, Loomba R, et al. Therapeutic Advances in Gastro. 2016;9(5):692-701.


Pegbelfermin: Phase 2 Study

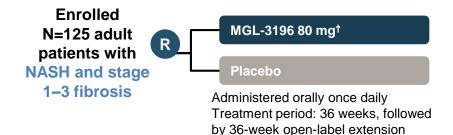
Pegbelfermin

- Pegylated FGF21 analogue
- Reduces steatosis and piotoxicity
- Improved lipid profiles
- Reduces hepatic inflammation and pro-C3, a marker of fibrosis

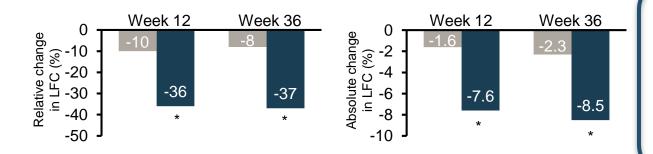
Primary outcomes


Change in hepatic fat fraction (%) from baseline to Week 16

FGF, fibroblast growth factor


Sanyal AJ, et al. Lancet. 2019; 392(10165):2705-2717.

NGM282: Phase 2 Study


Harrison SA, et al. Lancet. 2018;391(10126):1174-1185.

Resmetirom: Phase 2 Study

Primary outcomes

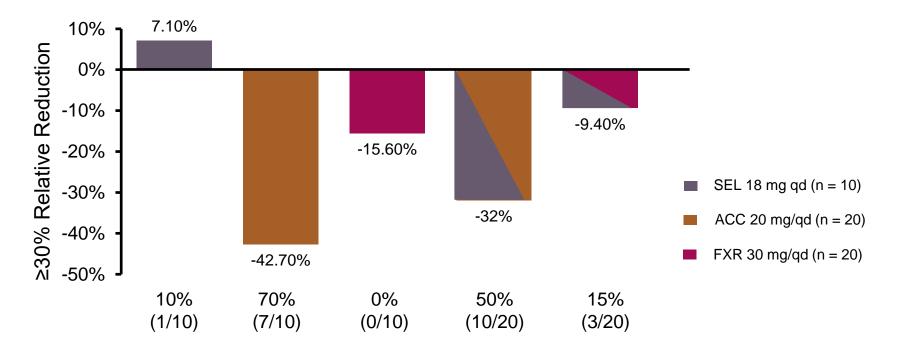
 Change from baseline in hepatic fat fraction assessed by MRI-PDFF at week 12

Results

- More patients achieved a 2-point NAS improvement (56% vs 32%; P = .02)
- More patients achieved NASH resolution (27% vs 6%; P = .02)

*p < 0.0001 vs placebo.

MRI-PDFF, magnetic resonance imagine-proton density fat fraction.


Harrison SA et al. Presented at AASLD 2019, available at: https://www.madrigalpharma.com/wp-content/uploads/2018/11/MGL-3196-Plenary-presentation-Nov-10-NASDAQ.pdf

Combinations with Complementary MOA Future: Targeting Multiple Pathways

Mechanism of Action (MOA)	Disease Process/ Pathway Target(s)
ASK1 inhibitor (selonsertib) and non- steroidal FXR agonist (GS-9674) and/or ACC inhibitor (GS-0976) ¹	Inflammation, fibrosis, and lipogenesis
Combined PPAR alpha and delta agonist (elafibranor) and an FXR agonist ²	Inflammation, fibrosis, and lipogenesis
Chemokine CCR2/CCR5 receptor blocker (cenicriviroc) in combination with an FXR agonist ^{3,4}	Inflammatory and fibrosis

ACC = acetyl-CoA carboxylase; ASK-1 = apoptosis signal-regulating kinase 1; CCR = chemokine (C-C motif) receptor; PPAR = peroxisome proliferator-activated receptor. 1. Lawitz E, et al. ILC. April 11-15, 2018; Paris, France. Abstract PS105; 2. Ratziu V, et al. ILC. April 19-23, 2017; Amsterdam, The Netherlands. Abstract LBP-542; 3. Oseini AM, Sanyal AJ. *Liver Int.* 2017;37 Suppl 1:97-103; 4. Rotman Y, Sanyal AJ. *Gut.* 2017;66(1):180-190

Combinations with Complementary MOA Combination of Selonsertib (SEL) with GS-0976 (ACC) or GS-9674 (FXR)

ACC = acetyl-CoA carboxylase; FXR = farnesoid X receptor.

Lawitz E, et al. ILC. April 11-15, 2018; Paris, France. Abstract PS105.

- Identify the risk factors and the markers of disease progression in patients with NAFLD
- Apply the latest data to choose appropriate non-invasive diagnostic and prognostic tools
- Stay current on the latest clinical trial evidence on novel emerging therapies for NASH

Questions Answers

#futureofNASH