

Regional SARS-CoV-2 Variants and their Impact on Inpatient Treatment

Supported by an educational grant from Gilead Sciences, Inc.

This activity may include discussions of products or devices that are not currently labeled for use by the U.S. Food and Drug Administration (FDA).

The faculty have been informed of their responsibility to disclose to the audience if they will be discussing off-label or investigational uses (any uses not approved by the FDA) of products or devices.

Sai Praveen Haranath, MBBS, MPH, FCCP (Moderator)

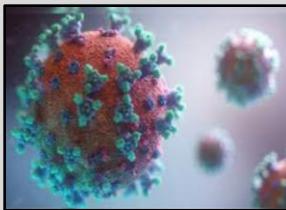
Senior Consultant Pulmonologist and Critical Care Specialist
Apollo Hospitals

Adjunct Professor, Pulmonary and Critical Care Medicine,
Apollo Hospitals Educational & Research Foundation (AHERF)
SVP, Medical & Strategy, Apollo Health Axis
Hyderabad, Telangana
India

Cristina Mussini, MD

Full Professor
Department of Infectious Diseases
University of Modena and Reggio Emilia
Modena, Italy

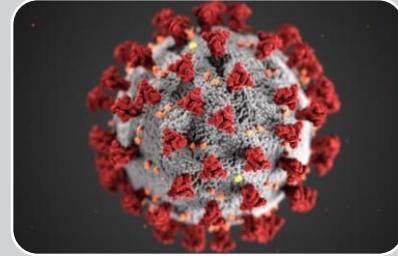
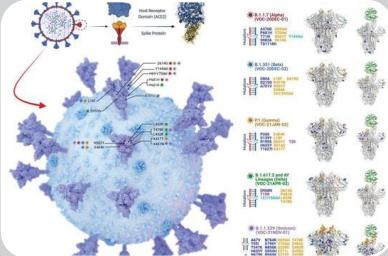
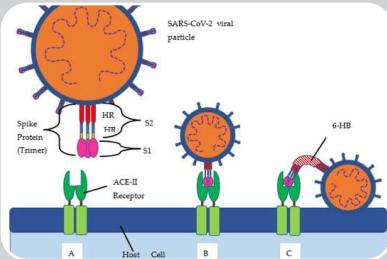
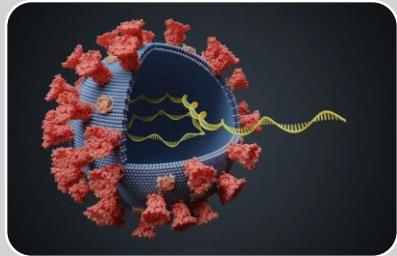
LEARNING OBJECTIVE 1



Analyze regional differences in SARS-CoV-2 variants and their influence on the effectiveness of inpatient COVID-19 treatment strategies

SARS-CoV-2 Misconceptions between Patients and Clinicians

Natural immunity provides superior and efficient protection without vaccination

Emerging variants are more severe and current vaccines are ineffective

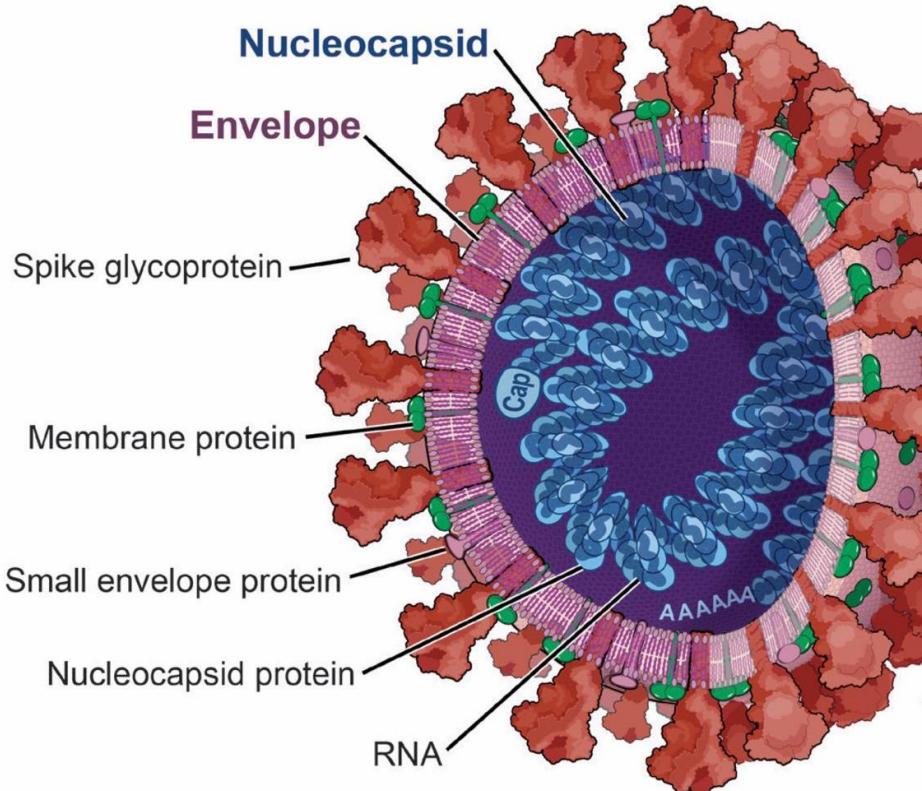
Long COVID is not a real or serious medical condition

Evolutionary Trajectory: Wuhan to Stratus/Nimbus

Wuhan
(2019)

Delta
(2021)

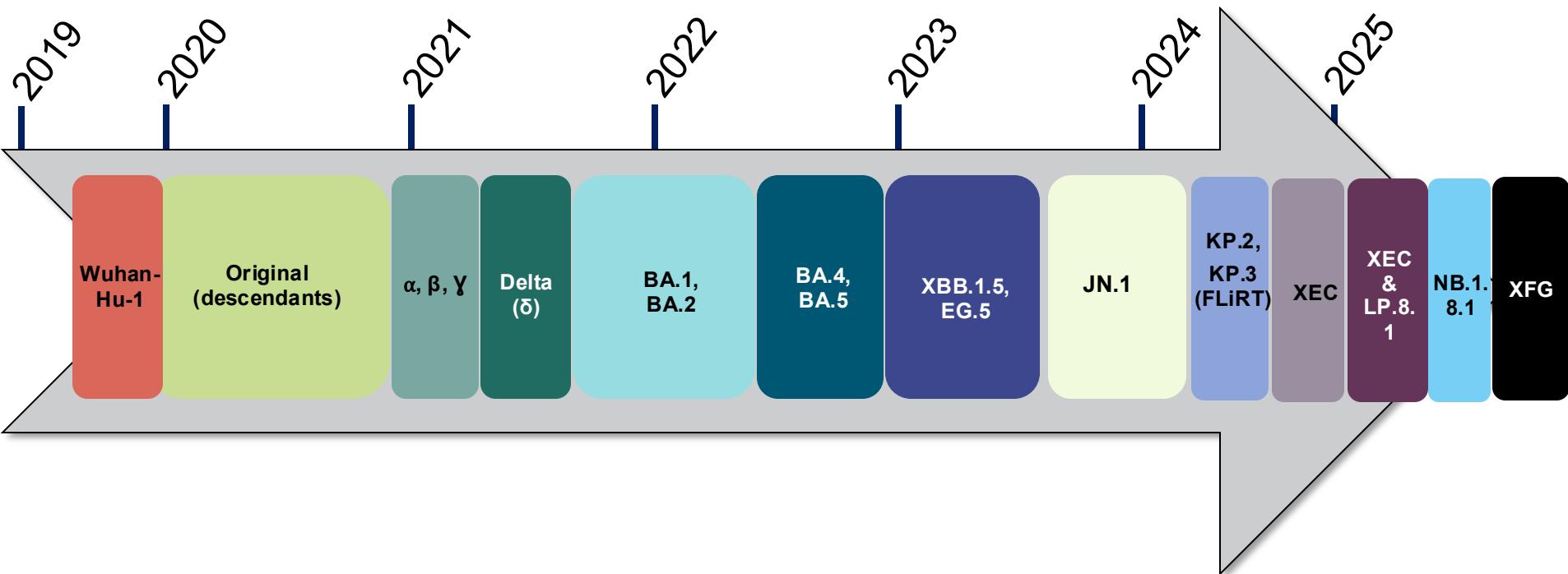
Omicron
(2022)

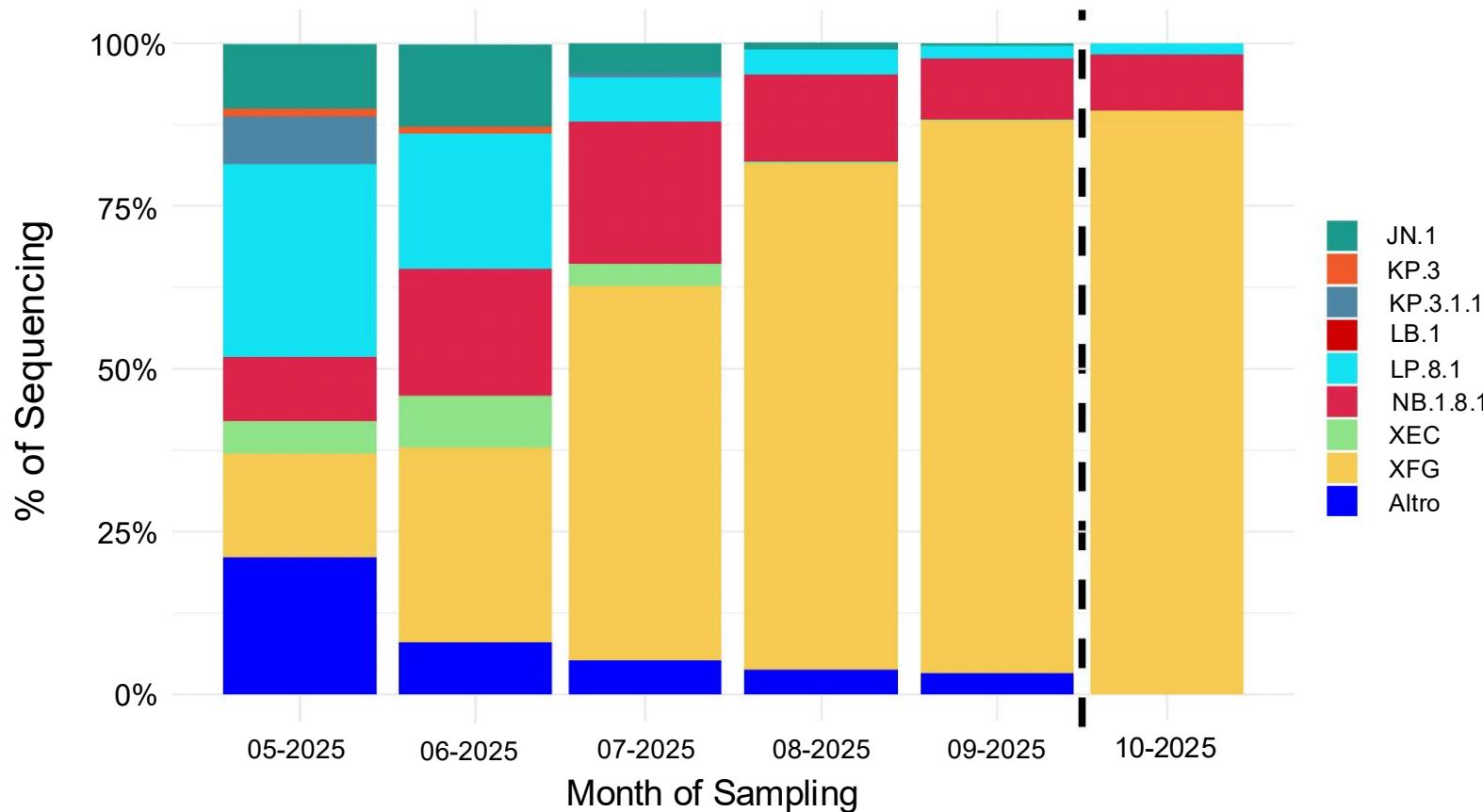

**Stratus/
Nimbus**
(2025)

Thomas L. News Medical Life Sciences Website. 2021. <https://www.news-medical.net/news/20210507/The-ancestor-of-SARS-CoV-2e28099s-Wuhan-strain-was-circulating-in-late-October-2019.aspx>; Shiehzadegan S, et al. *Clin Pract*. 2021; 11(4): 778-784; Chavda VP, et al. *Vaccines (Basel)*. 2022; 10(11):1926; Center for Disease Control and Prevention (CDC). 2024. <https://www.cdc.gov/ncird/whats-new/sars-cov-2-variant-xec-increases-as-kp-3-1-1-slows.html>.

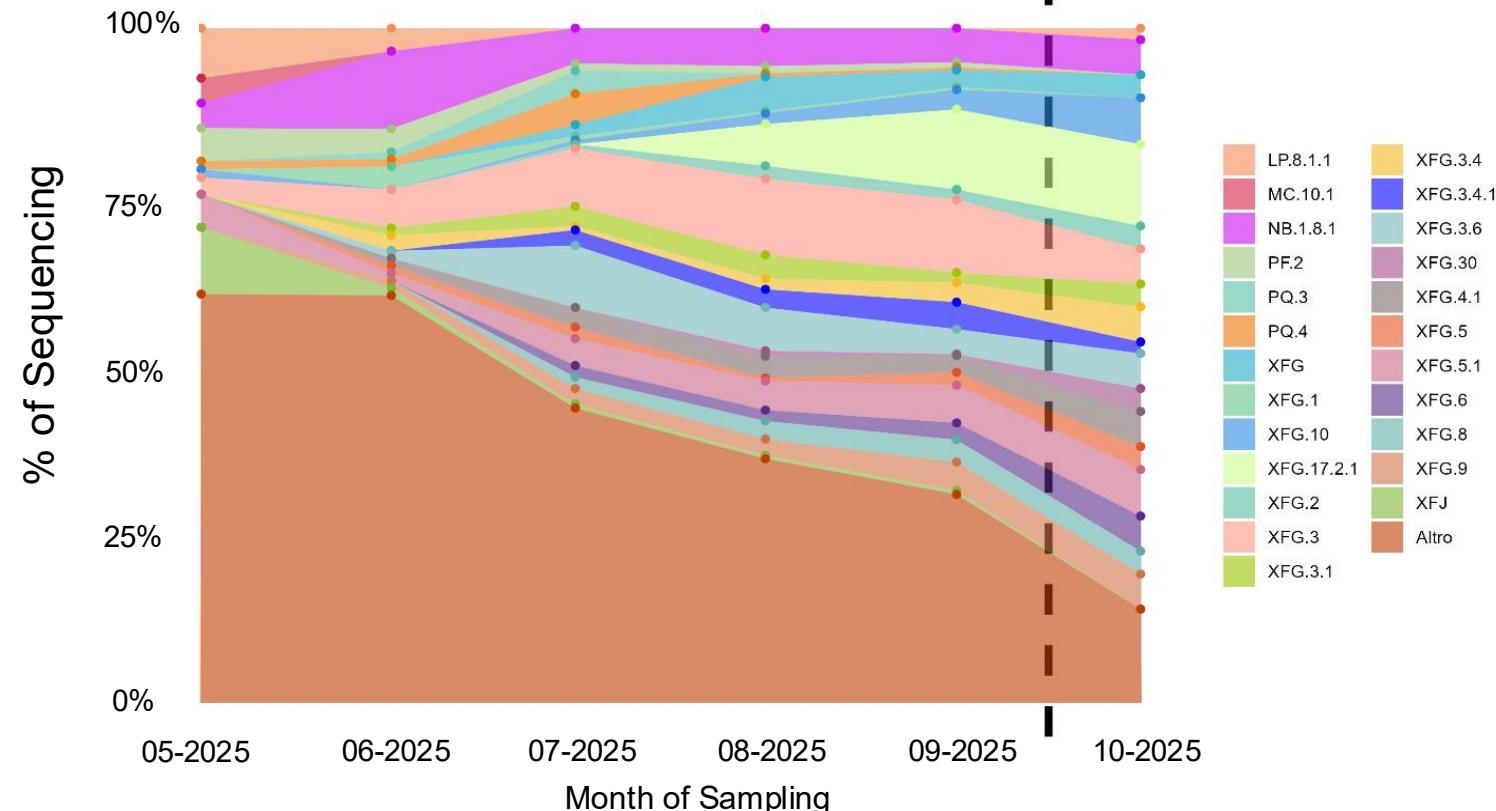
Biological Mechanism of SARS-CoV-2

- Enveloped +ssRNA virus
- Uses **ACE2** as the obligate entry receptor
- ACE2 expressed in:
 - Nasal epithelium
 - Bronchial epithelium
 - Type II alveolar cells
 - Small intestine
 - Heart and kidney


Structural Protein	Function
Nucleocapsid (N)	Encapsulates the RNA genome into a helical ribonucleocapsid complex
Spike (S)	Viral attachment and entry into host cells
Envelope (E)	Virion assembly, budding, and release
Membrane (M)	Virus assembly and morphogenesis


ACE2 = angiotensin-converting enzyme 2; +ssRNA = positive single-stranded ribonucleic acid

Zamora C, et al. *Molecules*. 2020; 25(20):4620.


SARS-CoV-2 Variant Timeline Progression

Percentage (%) of Major SARS-CoV-2 Lineages by Sampling Month

Percentage (%) of Major SARS-CoV-2 Sub-lineages by Sampling Month

Regional SARS-CoV-2 Variant Circulation Overview

(October 5 – November 5, 2025)

Variants of interest	Variants under monitoring	Variants of concern
<ul style="list-style-type: none">• JN.1	<ul style="list-style-type: none">• XFG• NB.1.8.1• LP.8.1• KP.3.1.1• XEC	<ul style="list-style-type: none">• None

Dominant Circulating Variants

XFG – Europe and Americas

NB.1.8.1 – Western Pacific

Patient Case: PW

- PW is a 29-yr old female with rheumatoid arthritis (RA) on maintenance therapy of prednisone (10mg/day)

Initial Presentation (Day 0)

- Reports 2 days of fever, cough, and chills

Vitals in ED

- Temp: 38.8°C (101.8°F)
- HR: 104 bpm
- BP: 104/55 mmHg
- RR: 18 breaths/min
- SpO2 97% on RA

Diagnostics

- CBC with diff – WBC 11,000/ μ L; neutrophils 70%, lymphocytes 12% (absolute 0.9K), eosinophils 0%
- CMP normal
- CRP mild elevation
- CXR - unremarkable

Management

- Admitted for monitoring due to immunosuppression

BP = blood pressure; CBC = complete blood count; CMP = comprehensive metabolic panel; CRP = c-reactive protein; CXR = chest x-ray; HR = heart rate; RR = respiratory rate; SpO2 = peripheral oxygen saturation; WBC = white blood cell

Patient Case: PW

Hospital Course

Day 2 (am)

Increasing dyspnea
SpO2 92% RA
CXR reveals bilateral infiltrates

Started on O2 2-3L via nasal cannula; IV dexamethasone (6mg/day)

Day 2 (pm)

- SpO2 drops to 85%
- CRP rises to 160 mg/L - tocilizumab initiated (single IV dose)
- NIV attempted (low tidal volume, high PEEP, proning cycles initiated)

Days 5-7

- Lung mechanics improve; FiO2 requirements fall

Days 7-9

- Successfully extubated to nasal cannula

Days 9-12

- Stable on room air, transferred to ward

Vitals Chart

Day	HR	BP	Temp	RR	SpO2
Day 1	98	108/60	100.4°F	20	95% RA
Day 2 AM	112	102/58	100°F	24	92% RA
Day 2 PM	118	98/54	100.2°F	32	85% despite O2
Day 3	114	100/58	99°F	Vent-controlled	SpO2 94% FiO2 60%
Day 5	112	102/60	98.6°F	Vent-controlled	SpO2 96% FiO2 40%
Day 7	106	104/58	98°F	Vent-controlled	SpO2 97% FiO2 30%
Day 9	92	110/65	98.2°F	18	Extubated → 94% on 3 L NC
Day 12	86	112/68	98.0°F	16	97% RA

XFG vs. NB.1.8.1 Variant Comparison

Key Findings:

- ✓ Enhanced transmissibility, no increased severity
- ✓ Public health Risk: LOW for both variants
- ✓ Vaccines remain effective
- ✓ Consistent symptom profiles with prior omicron variants

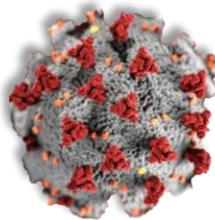
Parameter	XFG	NB.1.8.1
Global Prevalence (Oct-Nov 2025)	71% of sequences	15% of sequences
Transmissibility	Moderate growth advantage; low ACE2 binding affinity highest relative growth rate	High ACE2 binding: 2.5-fold higher infectivity than LP.8.1
Severity	No increase vs. prior variants	No increase vs. prior variants
Immune Evasion	2-fold antibody reduction in antibody neutralization	1.6-fold antibody reduction in antibody neutralization
WHO Public Health Risk Level	Low	Low
Vaccine Effectiveness	Expected to remain effective	Expected to remain effective

World Health Organization (WHO).2025. <https://data.who.int/dashboards/covid19/summary>; Geddes, et al. Gavi. 2025. <https://www.gavi.org/vaccineswork/eight-things-you-need-know-about-new-nimbus-and-stratus-covid-variants>; World Health Organization (WHO). WHO TAG-VE Risk Evaluation for SARS-CoV-2 Variant Under Monitoring: XFG2025. https://www.who.int/docs/default-source/coronavirus/25062025_xfg_ire.pdf; World Health Organization (WHO). WHO TAG-VE Risk Evaluation for SARS-CoV-2 Variant Under Monitoring: NB.1.8.1. 2025. https://cdn.who.int/media/docs/default-source/documents/epp/tracking-sars-cov-2/23052025_nb.1.8.1_ire.pdf; Kavanagh K. Nature Website. 2025. <https://www.nature.com/articles/d41586-025-03412-x>; Guo C, et al. *Lancet Infect Dis*. 2025;25(7):374-377; Abir HP, et al. *Health Sci Rep*. 2025;8(11):e71453.

Inpatient Treatment: Regional Variations

Organization	Severity Classifications	First-Line Treatments	Second-Line Treatments	VTE Prophylaxis
WHO	<ul style="list-style-type: none"> Non-severe Severe ($\text{SpO}_2 < 90\%$) Critical (ARDS/sepsis/shock) 	<ul style="list-style-type: none"> Corticosteroids (dexamethasone) Antivirals Supportive care 	<ul style="list-style-type: none"> Tocilizumab/baricitinib for severe cases 	<ul style="list-style-type: none"> Standard prophylactic doses LMWH
NICE (UK)	<ul style="list-style-type: none"> Similar to WHO classifications 	<ul style="list-style-type: none"> Corticosteroids Antivirals Oxygen therapy (CPAP/HFNC) 	<ul style="list-style-type: none"> Tocilizumab for severe cases 	<ul style="list-style-type: none"> Risk-based approach
IDSA (USA)	<ul style="list-style-type: none"> Mild-Moderate ($\text{SpO}_2 > 94\%$) Severe ($\text{SpO}_2 \leq 94\%$) Critical (mechanical ventilation/ECMO) 	<ul style="list-style-type: none"> Nirmatrelvir/ritonavir Remdesivir Corticosteroids 	<ul style="list-style-type: none"> Tocilizumab/baricitinib for severe cases 	<ul style="list-style-type: none"> ASH recommends prophylactic over intermediate doses
ICMR (India)	<ul style="list-style-type: none"> Mild: URTI, no hypoxia Moderate: $\text{RR} \geq 24/\text{min}$, SpO_2 90–93% on room air Severe: $\text{RR} > 30/\text{min}$, $\text{SpO}_2 < 90\%$ on room air 	<ul style="list-style-type: none"> Awake proning for all hypoxic patients Corticosteroids: (moderate/severe) Antivirals: Restricted emergency use for moderate cases 	<ul style="list-style-type: none"> Tocilizumab (off-label): Considered only for rapidly progressive severe disease with raised inflammatory markers within 24–48h of steroid use 	<ul style="list-style-type: none"> Prophylactic anticoagulation: UFH or LMWH

ASH = American Society of hematology; ARDS = acute respiratory distress syndrome; CPAP = continuous positive airway pressure; ECMO = extracorporeal membrane oxygenation; HFNC = high-flow nasal cannula; ICMR = Indian Council of Medical Research; IDSA = Infectious Diseases Society of America; LMWH = low molecular weight heparin; NICE = National Institute for Health and Care Excellence; UFH = unfractionated heparin; URTI = upper respiratory tract infection; VTE = venous thromboembolism


Infectious Diseases Society of America (IDSA). 2025. <https://www.idsociety.org/practice-guideline/SARS-CoV-2-guideline-treatment-and-management/>.

National Institute for Health and Care Excellence (NICE). 2021. <https://www.nice.org.uk/guidance/ng191/resources/covid19-rapid-guideline-managing-covid19-pdf-66142077109189>. World Health Organization (WHO). 2025. <https://iris.who.int/server/api/core/bitstreams/d1021eff-f570-4c22-b630-a44bf4267a6c/content>. Siegal et al. *Blood Advances*. 2025; 9(6):1247–1260;

Sharma S, et al. *Sens Int*. 2020; 1:100013; Indian Council for Medical Research. *Clinical Guidance for Management of Adult COVID-19 Patients*. 2023.

<https://covid19dashboard.mohfw.gov.in/pdf/ClinicalGuidanceforManagementofAdultCOVID19Patientsupdatedason05thjan2023.pdf>.

Key Takeaways for Global HealthCare

Variants do not dictate treatment

- Apply the same evidence-based standard of care across variants according more to disease severity rather than lineage

Time is of the essence

- Early intervention is the single biggest predictor of outcome

Treat the patient, not the variant

- Focus on age, comorbidities, and immune status when developing individualized treatment plan

Put information into action!

Takeaways from this program can be implemented into your practice to improve patient care.

- **Utilize** guideline-concordant protocols and disease severity rather than specific variants when making inpatient SARS-CoV-2 treatment decisions in at least 80% of patients over the next 6-12 months
- **Prioritize** patient vulnerabilities over specific variants when selecting inpatient treatment plans in at least 80% of patients over the next 6-12 months
- **Recognize** the benefit of earlier versus delayed initiation of inpatient SARS-CoV-2 treatment in at least 80% of patients over the next 6-12 months

To Receive Credit

To receive CME/CE credit for this activity, participants must complete the post-test and evaluation online.

Participants will be able to download and print their certificate immediately upon completion.

Other programs in this series include:

Part 1:

Guideline-Based Therapeutics for Hospitalized Patients with SARS-CoV-2 Infection

Part 2:

Early Diagnosis and Timely Treatment in Hospitalized Patients with SARS-CoV-2 Infection

Part 3:

Risk Stratification in Hospitalized SARS-CoV-2 Patients

Visit the
Infectious Disease Hub

Free resources and education
for health care professionals and patients

<https://www.cmeoutfitters.com/infectious-disease-hub/>