HEMOSTASIS 2.0 Rethinking Hemophilia Management with Novel Agents and Shared Decision Making

Supported by an educational grant from Novo Nordisk, Inc.

In support of improving patient care, CME Outfitters LLC is jointly accredited by the Accreditation Council for Continuing Medical Education (ACCME), the Accreditation Council for Pharmacy Education (ACPE), and the American Nurses Credentialing Center (ANCC), to provide continuing education for the healthcare team.

Amy D. Shapiro, MD (Moderator)

Medical Director Indiana Hemophilia & Thrombosis Center Indianapolis, Indiana

Learning Objectives

- Assess the clinical efficacy, durability in restoring hemostasis, and safety of new approaches for the management of hemophilia
- Develop a clinical and laboratory monitoring plan of the hemostatic status in patients receiving new therapies
- Implement shared decision making (SDM) strategies to better engage patients/caregivers with hemophilia in their treatment plan

Maya C. Bloomberg, MSN, APRN

Hematology Nurse Practitioner University of Miami Hemophilia Treatment Center Miami, Florida

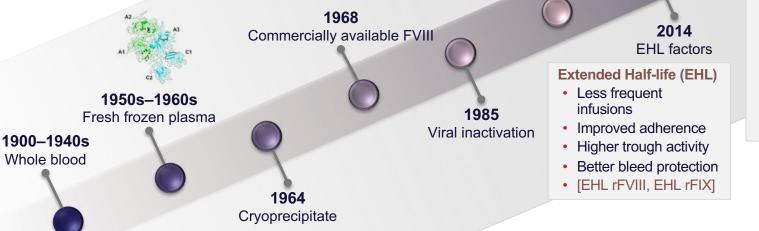
Allison P. Wheeler, MD, MSCI Associate Professor **Department of Pathology, Transfusion** Medicine and Coagulation **Department of Pediatrics, Pediatric** Hematology **Director of Research & Benign** Hematology Wanderbilt University Medical Center Nashville, Tennessee

Mark W. Skinner, JD

Founder, President/CEO Institute for Policy Advancement Ltd Washington, DC **Assistant Professor Department of Health Research** Methods, Evidence, and Impact McMaster University Hamilton, Ontario, Canada

Transformational Care in Today's Therapeutic Landscape *Mark W. Skinner, JD*

Therapeutic Evolution in a Nutshell


Factor Replacement

- · Missing protein identified, purified, returned to PwH
- · Viral inactivation
- Recombinant factor products
- Reduced volume
- · Better storage/portability
- [FVIII, FIX concentrates]

Non-replacement, Rebalancing Therapies

- Metabolic manipulation
- · Small molecules; SC dose
- Use with or without inhibitors
- [FVIII mimetics, anti-TFPI, anti-APC, AT-siRNA]

1990s Recombinant FVIII/FIX

APC, activated protein C; AT, antithrombin; FIX, factor IX; FVIII, factor VIII; PwH, person with hemophilia; r, recombinant; RNA, ribonucleic acid; SC, subcutaneous; si, small interfering; TFPI, tissue factor pathway inhibitor.

Ozelo MC, Yamaguti-Hayakawa GG. Res Pract Thromb Haemost. 2022;6:e12695.

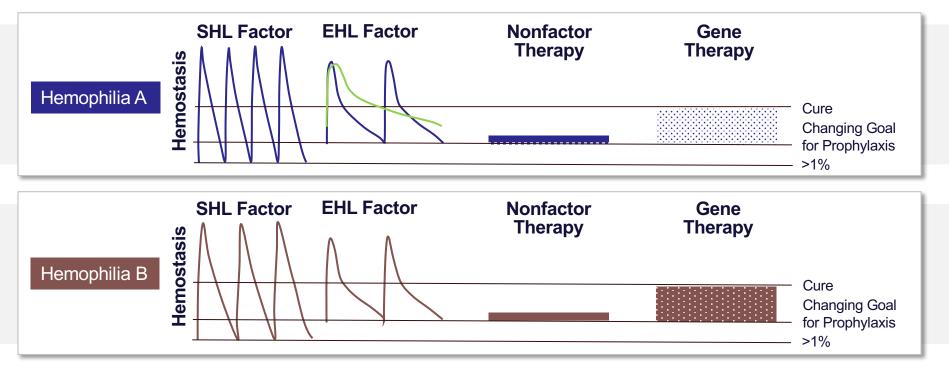
2010s–2020s Gene treatment

Gene Therapy

 Provides functional gene or edits abnormal gene

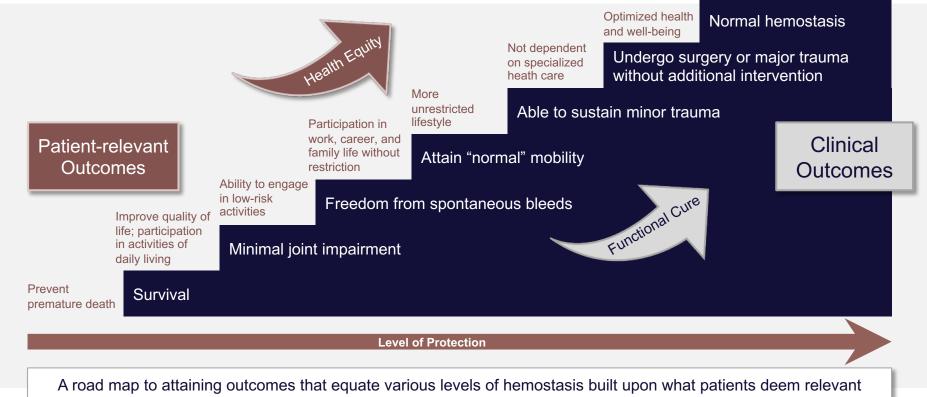
AAV

vectors


2017-2020s

Nonfactor treatment

- Potential long-term cure or remission
- [FVIII and FIX products FDA approved]



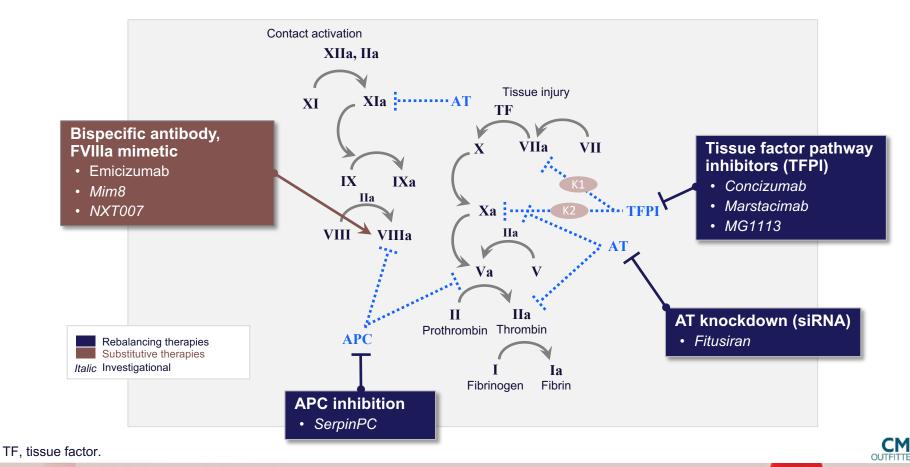
Goal of Therapy *Stable Hemostatic Levels*

Achieving the Unimaginable Health Equity

Skinner MW, et al. Haemophilia. 2020;26:17–24.

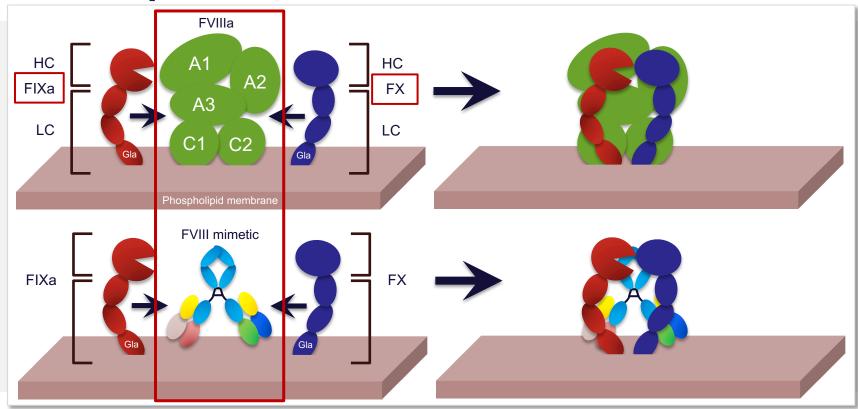
PART 1 Mechanism of Action and Efficacy of Novel Agents *Amy D. Shapiro, MD*

Mechanism of Action Mimetics, Anti-TFPI, siRNA-AT



Which of the following novel therapeutics has reported a 15-fold increased potency compared to emicizumab, which may allow for lower dosing volumes?

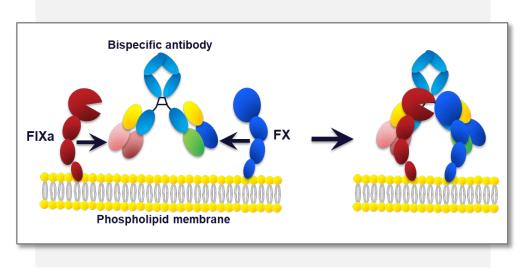
- A. Concizumab
- B. Mim8
- C. Fitusiran
- D. SerpinPC
- E. I'm not sure



Novel Therapeutics to Treat Hemophilia A or B ± Inhibitors

Croteau SE, et al. Am J Hematol. 2021;96(1):128-144.

Factor VIII vs FVIII Mimetics MOA Comparison


HC, high concentration; LC, low concentration; MOA, mechanism of action.

Sampei Z, et al. PLoS One. 2013;8(2):e57479. Lenting PJ, et al. Blood. 2017;130 (23):2463–2468.

FVIIIa Mimetics Bispecific Antibodies for Hemophilia A ± Inhibitors

Emicizumab

- FDA approved 2017–2018
- Subcutaneous (SC) administration
- Flexible dosing regimens
- Long half-life (26.9 ± 9.1 days)
- Decreased treatment burden, especially with inhibitors

Sampei Z, et al. *PLoS One.* 2013;8(2):e57479.


FDA-approved drug: emicizumab-kxwh. Revised January 2024. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761083s018lbl.pdf.

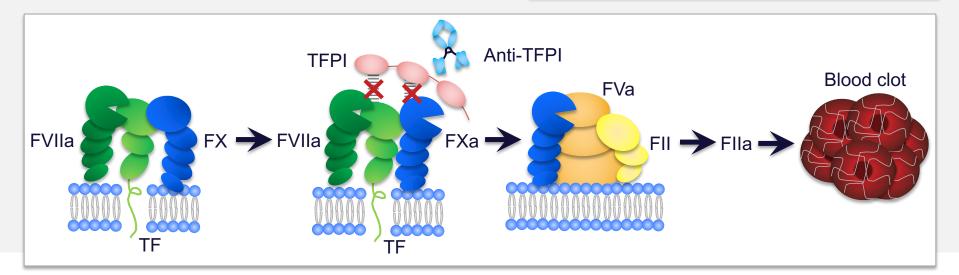
Zhou Z-Y, et al. J Manag Care Spec Pharm. 2020;26(9):1109–1120.

Skinner MW, et al. Haemophilia. 2021;27:854–865.

FVIIIa Mimetics Bispecific Antibodies for Hemophilia A ± Inhibitors

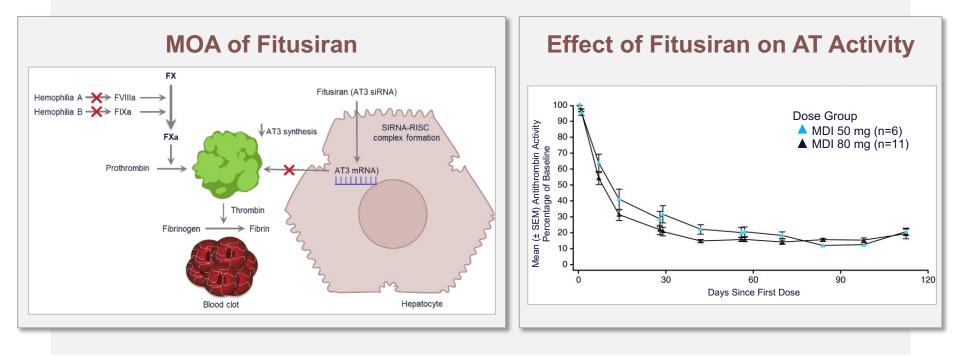
Fc, fragment crystallizable; FcRn, neonatal crystallizable fragment receptor.

Sampei Z, et al. *PLoS One*. 2013;8(2):e57479. Lentz SR, et al. *J Thromb Haemost*. 2024;22:990–1000. Teranishi-Ikawa Y, et al. *J Thromb Haemost*. 2024;22:430–440.


Anti-TFPIs in Development for Hemophilia ± Inhibitors

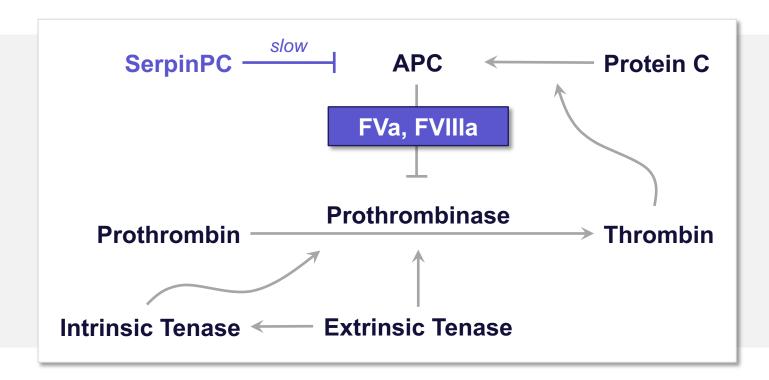
Concizumab

- Assessed in explorer trials
- Approved in Canada (FIX with an inhibitor)
- Approved in Japan (FVIII or FIX with inhibitors); under FDA review in the United States
- SC, once-daily, custom pen


Marstacimab

- Phase 3 BASIS trial
- Under regulatory review in the United States and the European Union (EU)
- Once weekly SC dosing

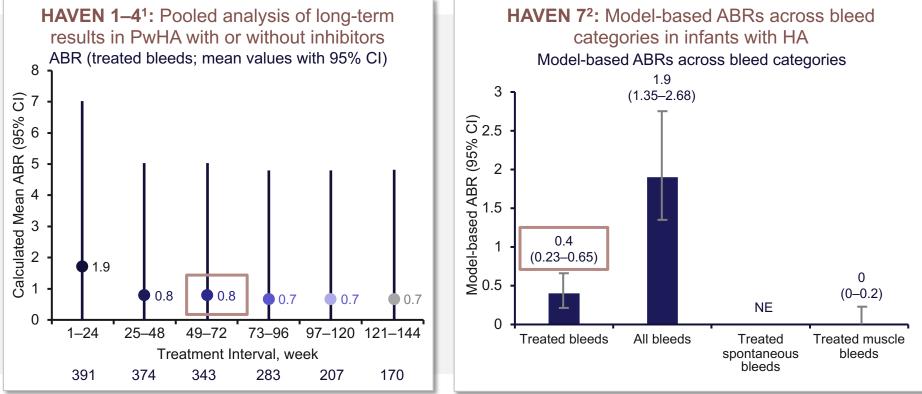
Matsushita T, et al. *N Engl J Med*. 2023;389:783–794. Keam SJ. *Drugs*. 2023;83(11):1053–1059. Matino D, et al. *Blood*. 2023;142(Suppl 1):285. Chowdary P. *Drugs*. 2018;78(9):881–890.


Fitusiran SC siRNA Targeting Antithrombin

CME 🗲

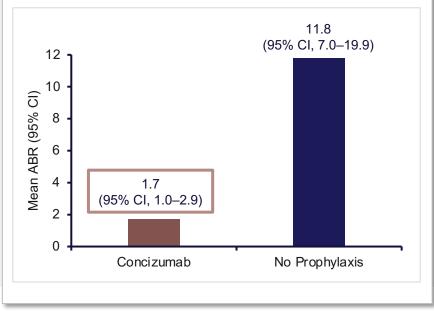
Boyce S, Rangarajan S. J Blood Med. 2023;14:317–327. Pasi KJ, et al. J Thromb Haemost. 2021;19(6):1436–1446.

SerpinPC (Recombinant Serine Protease Inhibitor)


Baglin T, et al. *Blood.* 2023;142(Suppl 1):2619. Polderdijk S, et al. *Curr Opin Hematol.* 2017;24:446–452.

Efficacy Summary Mimetics, Anti-TFPI, siRNA-AT

Emicizumab Phase 3


¹Callaghan M, et al. *Blood.* 2021;137:2231–2242. ²Pipe SW, et al. *Blood.* 2023;202321832. ABR, annualized bleeding rate; CI, confidence interval; HA, hemophilia A.

Concizumab Phase 3

explorer7¹: Patients with HA or HB with inhibitors

Estimated mean ABR Rate ratio, 0.14 (95% CI, 0.07–0.29); *P*<0.001

explorer8²: Spontaneous and traumatic bleeding episodes by HA/HB at the 56-week cut-off

		Concizumab Prophylaxis (arms 1–4)		
		Hemophilia A	Hemophilia B	
N in full analysis set		80	64	
Patient years of exposure in analysis data set		111.9	71.7	
Treated spontaneous and traumatic bleeding episodes				
Number of bleeding episodes		349	302	
ABR	Median (interquartile range)	1.7 (0.0–4.5)	2.8 (0.0–6.4)	
	Mean (standard deviation)	3.9 (6.6)	6.4 (14.2)	
	Min; max	0.0; 37.1	0.0; 91.3	

¹Matsushita T, et al. N Engl J Med. 2023;389:783–794. ²Astermark J, et al. Blood. 2023;142(Suppl 1):2609.

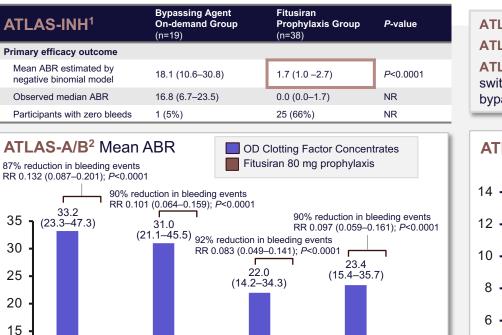
HB, hemophilia B.

Marstacimab Phase 3

BASIS¹: Severe HA or moderately severe to severe HB, with or without inhibitors

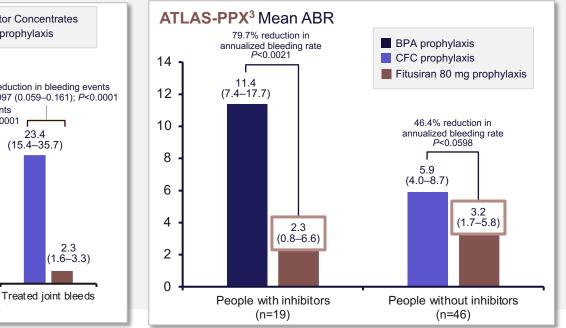
Treatment Group	Factor Replacement Treatment Received during OP (n=116)	Marstacimab Prophylaxis during ATP (n=116)	Marstacimab Prophylaxis during LTE (n=87)
OD	OD	Marstacimab	Marstacimab
Mean ABR ^a (95% CI)	(n=33) 38.00 (31.03–46.54)	(n=33) 3.18 (2.09–4.85)	(n=29) 3.86 (2.02–7.37)
Rate estimate (95% CI), <i>P</i> -value ^ь			
RP	RP	Marstacimab	Marstacimab
Mean ABRª (95% CI)	(n=83) 7.85 (5.09–10.61)	(n=83) 5.08 (3.40–6.77)	(n=58) 2.27 (1.40–3.67)
Rate estimate (95% CI), <i>P</i> -value	-2/1/1-2/3/1-11/101/P=11/13/10		_

^aModel-derived ABR


^b*P*-values for the null hypothesis that the ration = $\frac{1}{2}$ for all bleed related parameters

^c*P*-value if superiority met

ATP, 12-month active treatment phase; LTE, long-term extension study; OD, on demand; OP, 6-month observation phase; RP, routine prophylaxis. Matino D, et al. *Blood.* 2023;142(Suppl 1):285.



Fitusiran Phase 3

ATLAS-INH¹: HA or HB with inhibitors ATLAS-A/B²: HA or HB without inhibitors

ATLAS-PPX³: HA or HB with or without inhibitors who have switched from prior clotting factor concentrate (CFC) or bypassing agent (BPA) prophylaxis

¹Young G, et al. *Lancet.* 2023;401(10386):1427–1437.

3.1

(2.3–4.3)

Any treated

bleeding event

4.4

(3.3 - 5.9)

All bleeding events

10

5

0

²Srivastava A, et al. *Lancet Haematol.* 2023;10(5):e322–e332. ³Kenet G, et al. *HemaSphere.* 2023;7(S3):e643526e.

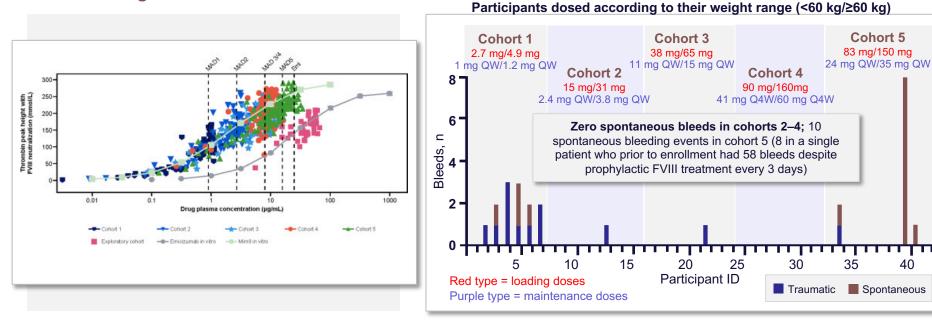
1.8

(1.2 - 2.7)

Treated

spontaneous bleeds

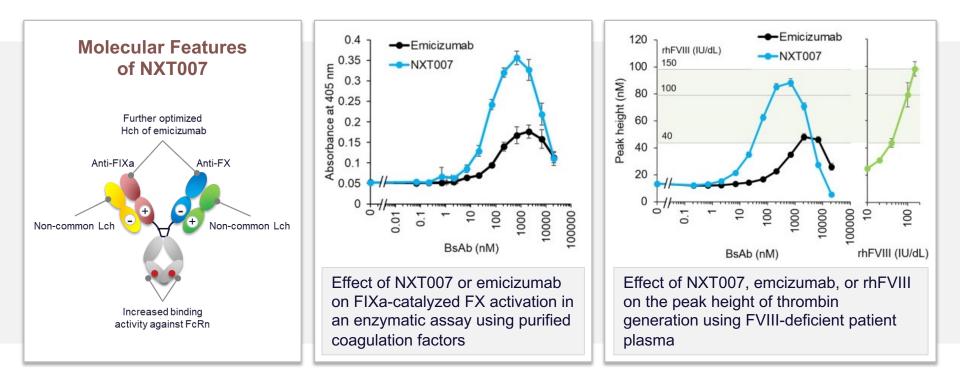
Factor VIII Mimetics in Development Mim8 and NXT007



Mim8 (FRONTIER 1/2)

Thrombin Peak Height vs Drug Plasma Concentration

Observed Treated Bleeds from the Multiple Ascending Dose (MAD) Cohorts



• In vitro, Mim8 was 15× more potent than emicizumab

Lentz S, et al. EAHAD 2023. Abstract PO-072. Lentz SR, et al. J Thromb Haemost. 2024;22:990–1000.

NXT007 *A Bispecific Antibody That Mimics the Cofactor Function of FVIIIa*

Teranishi-Ikawa Y, et al. J Thromb Haemost. 2024;22(2):430-440.

PART 2 Thrombotic Risk Mitigation and Coagulation Assays *Allison D. Wheeler, MD, MSCI*

Thrombotic Risk Mitigation

Thromboembolic Events Reported during Trials

- Emicizumab (HAVEN)
- Concizumab (explorer)
- Fitusiran (ATLAS)

Risk mitigation strategies put in place: dosing adjustments and guidance for management of mild/moderate bleeds

Concizumab *Thrombotic Events (3) in 3 Patients Resulting in Trial Pause*

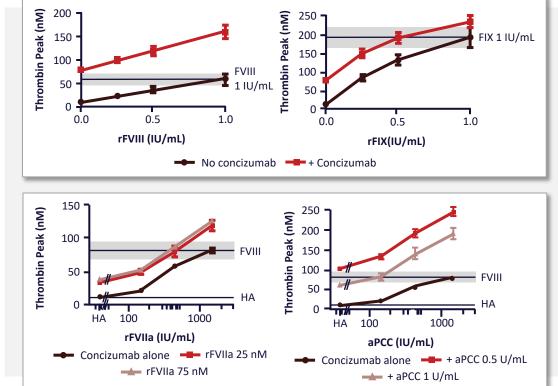
PwH	Age Range (years)	Time on Concizumab	Thrombotic Event (all non-fatal)	Baseline Thrombotic Risk?*	Concomitant Hemostatic Medication on Day of or Days up to Event Onset?
HA	45–50	2 months	Acute myocardial infarction	Yes	Yes
HBwl	25–30	3 weeks	Renal infarction	Yes	Yes
HA	40–45	3 months	DVT, PE, superficial thrombosis of vein (left elbow region at site of FVIII injection)	Yes	Yes

*One patient (in explorer7) had obesity, hypercholesterolemia, and multiple removals and replacements of a central venous access device. One patient (in explorer8) had obesity, lower leg edema, and hypertension. A second patient in explorer8 had a history of smoking, hypertension with occasional use of ACE inhibitors, increased BP at screening, chronic tooth inflammation followed by extraction, and occasional chest pain for the month preceding the thromboembolism in the other patient.

In March 2020, study was paused for evaluation of trial data and development of mitigation strategy

DVT, deep vein thrombosis; PE, pulmonary embolism.

Seremetis S, et al. *Blood.* 2020;136:40. Shapiro AD, et al. *Blood Adv.* 2022;6(11)a;3422–3432. Matsushita T, et al. *N Engl J Med.* 2023;389(9):783–794.



Concizumab Phase 3 Trials *Risk Mitigation*

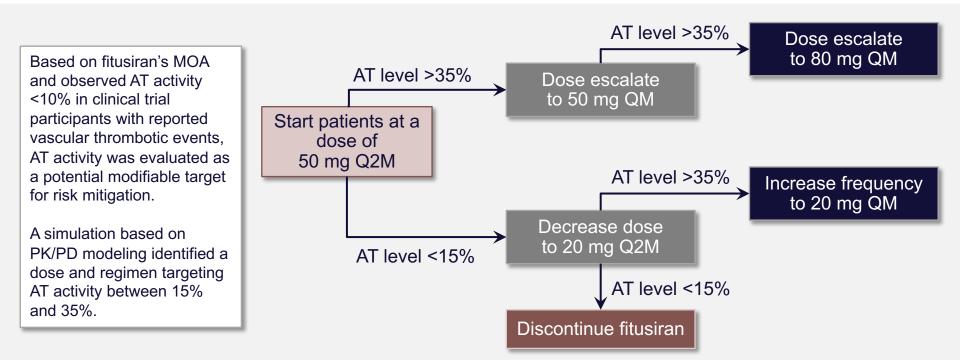
- Assessment included clinical review and nonclinical data
 - Pharmacokinetic profile of patients based on population PK modeling
 - Thrombin generation studies with concomitant FVIII, FIX, FVIIa, and aPCC
- Risk mitigation
 - ELISA-based concizumab dose adjustments
 - Therapeutic: 200–4,000 ng/mL
 - Decreased factor dosing to the lowest approved dose for each product when treating mild/moderate bleeds

aPCC, activated prothrombin complex concentrate; PK, pharmacokinetics.

Kjalke M, et al. J Thromb Haemost. 2021;19(7):1687-1696.

Fitusiran Thrombotic Events Resulting in Trial Pause

• Evaluation of thrombotic events as of October 2020 leading to trial pause and subsequent mitigation strategy


PwH	Age Range (y)	Medical History/Comments	AT Category	Thrombotic Event
HA	30–40	DVT (not identified at enrollment), T2D, obesity, HCV, tobacco use	<10%	CVA
HA	>60	Well-controlled HIV, HCV, and prostate cancer status post-radical prostatectomy (recent PSA WNL)	<10%	Cerebral infarct
HAwl	20–30	Suspected thrombosis involving a spinal injury	<10%	Spinal vascular disorder
HBwl	20–30	Concomitant use of BPA (rFVIIa) in excess of current bleed management guidelines in fitusiran studies	10%–20%	Atrial thrombosis
НА	20–30	Concomitant use of factor concentrate in excess of current bleed management guidelines (event initially misdiagnosed and treated as a subarachnoid hemorrhage resulting in fatal outcome)	10%–20%	Cerebral venous sinus thrombosis

HAwI/HBwI, hemophilia A/B with inhibitors; HCV, hepatitis C virus; HIV, human immunodeficiency virus; PSA, prostate-specific antigen; T2D, type 2 diabetes; WNL, within normal limits.

Young G, et al. Res Pract Thromb Haemost. 2023;7(4):100179.

Fitusiran Revised Dosing *Targeting AT Range from* ≥15% to ≤35%

PD, pharmacodynamic.

Young G, et al. Res Pract Thromb Haemost. 2023;7(4):100179.

Coagulation Assays and Non-Factor Products

Which clinically-available, standard coagulation tests measure anti-TFPI hemostatic activity?

- A. PTT and PT
- B. D-dimer
- C. Fibrinogen
- D. Standard tests not applicable
- E. I'm not sure

Assays to Assess FVIII Mimetics

Assay to Determine Drug Is Present

- aPTT normalized
 - FVIII activity is $\uparrow\uparrow\uparrow$
- Human chromogenic FVIII provides some measure of equivalence
- Bovine chromogenic assays used to
 - Determine level of exogenous FVIII administered
 - Measure FVIII inhibitor
- Drug level

- Clinical monitoring of bleeding events used to assess efficacy
- aPTT prolonged determine if
 - Patient taking drug (t_{1/2} is long)
 - Drug is functional
- Human chromogenic FVIII activity and inhibitor to assess for neutralizing antibody

Assays to Assess Anti-TFPI Antibodies

Assay to Determine Drug Is Present

- Drug levels
 - Concizumab level will be available to direct drug dosing at 1 month
 - Marstacimab level reported in the trial manuscripts

- Clinical monitoring of bleeding events used to assess efficacy
- Assays to determine activity of agent are not standard
 - TFPI measurements
 - Concizumab: \downarrow free TFPI
 - Marstacimab: ↑ total TFPI
 - \uparrow Thrombin generation
 - ↑ D-dimers/PF 1.2

Assays to Assess Fitusiran

Assay to Determine Drug Is Present

• \downarrow AT level demonstrates drug activity

- Clinical monitoring of bleeding events used to assess efficacy
- Assays to determine activity of agent are not standard
 - ↑ Thrombin generation

Assays to Assess SerpinPC

Assay to Determine Drug Is Present

No standard assay, SerpinPC concentration in clinical trial

- Clinical monitoring of bleeding events used to assess efficacy
- Assays to determine activity of agent are not standard
 - \uparrow Thrombin generation

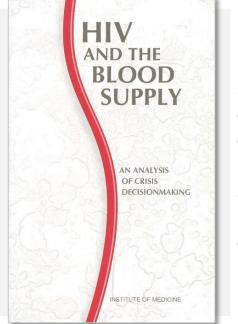
PART 3 Choosing the Best Product For and With the Patient Maya C. Bloomberg, MSN, APRN Mark W. Skinner, JD

According to the World Federation of Hemophilia (WFH) Shared Decision Making Guide, what is the recommended first step for patients?

- A. Learn about the treatment options
- B. Have an open and meaningful conversation with the healthcare team
- C. Reflect on life goals and current treatment
- D. Assess side effects of available treatments
- E. I'm not sure

What Is Shared Decision Making?

A process wherein:


A patient shares with the provider all their aspirations, relevant values, preferences, and goals. A health care provider shares with a patient all relevant information and best scientific evidence on the pros and cons of all potential treatment options.

With this mutual understanding, the **patient and provider decide** the best course of action.

Hemophilia Foundation Australia. 2023. https://www.haemophilia.org.au/national-haemophilia/no-223-september-2023/wfh-shared-decision-making-tool/. Velentino LA, et al. J Haem Pract. 2021;8(1):69–79.

SDM Adopted in Hemophilia in 1980s

Blood safety is a shared responsibility of many diverse organizations, including manufacturers, groups such as the NBDF (formerly NHF), and others.

How is medical decision-making shared? The case of haemophilia patients and doctors: the aftermath of the infected blood affair in France

Emmanuelle Fillion

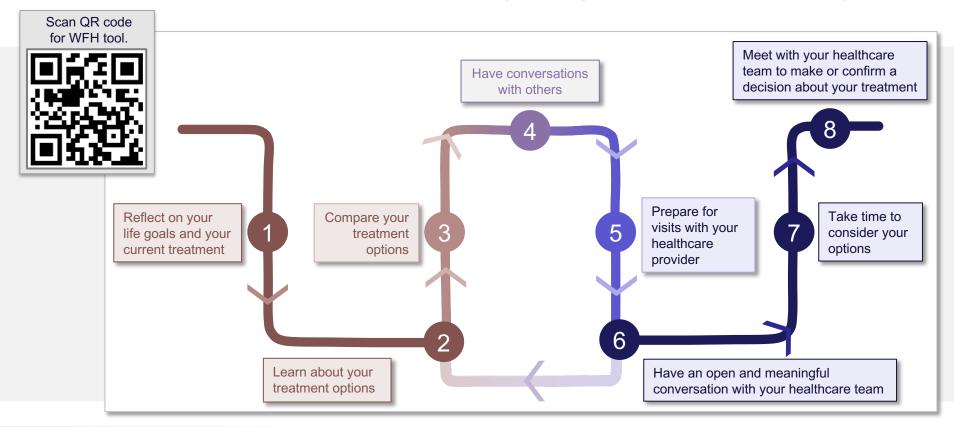
Sociologist at CERMES (Centre de Recherche Médecine, Sciences, Santé et Société), Paris, France

	Abstract	
Correspondence Emmanuelle Fillion CERMES Site CNRS 7, rue Guy-Môquet 94801 Villejuif Cedex	Objective This article looks at how users and doctors in France have rethought the question of shared decision-making in the clinical field of haemophilia following a major crisis – that of the infected blood affair.	
France E-mail: fillion@vjf.cnrs.fr	Design We did a qualitative survey based on semi-structured interviews in three regions of France.	
Accepted for publication 2 July 2003	Setting and participants The interviews covered 31 clinical doct	
Keywords: AIDS, clinical relationship, decision-making, haemophilia, prosecution, sociology	of haemophilia and 31 users: 21 adult males with severe haemophilia (21/31), infected (14/21) or not (7/21) with HIV, the infected wife of one of the latter (1/31) and nine parents of young patients with severe haemophilia (9/31), either HIV positive (6/9) or negative (3/9).	

NBDF, National Bleeding Disorders Foundation; NHF, National Hemophilia Foundation.

Institute of Medicine Committee to Study HIV Transmission through Blood and Blood Products. Leveton LB, et al, eds. HIV and the Blood Supply: An Analysis of Crisis Decisionmaking. National Academies Press (U.S.). 1995. https://www.ncbi.nlm.nih.gov/books/NBK232417/. Fillion, M. Health Expect. 2003:6(3):228-241.

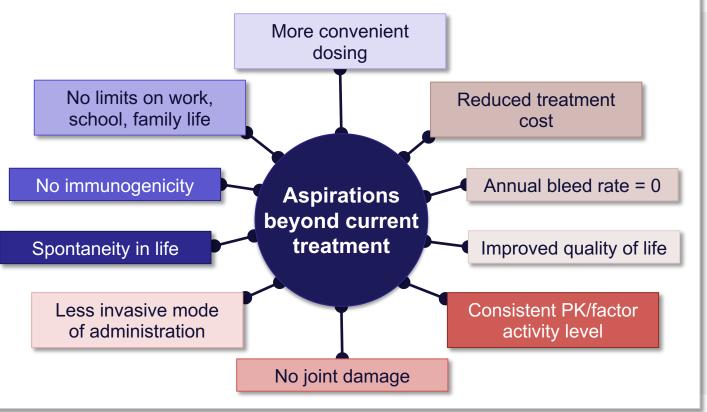
What Is Shared Decision Making?


A process wherein:

A patient shares with the provider all their aspirations, relevant values, preferences, and goals. A health care provider shares with a patient all relevant information and best scientific evidence on the pros and cons of all potential treatment options.

With this mutual understanding, the **patient and provider decide** the best course of action.

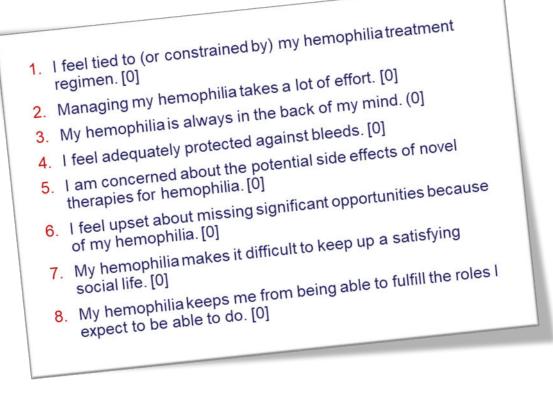
Step-by-Step Guide to SDM *World Federation of Hemophilia (WFH) Decision Making Tool*



Adapted from WFH. https://sdm.wfh.org.

Assess Your Goals and Aspirations

How would you describe the impact of your hemophilia on obtaining your life goals (goals related to work, education, family, hobbies, etc.)?


Why are you considering a change to your therapy?

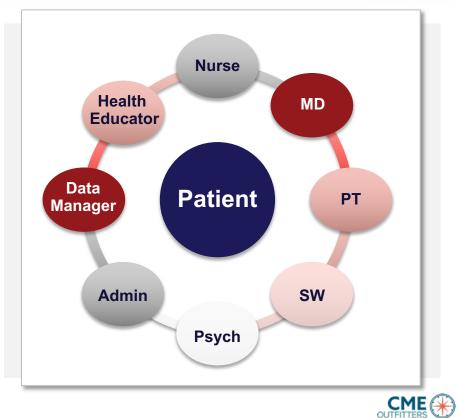
Reflect on Your Life with Hemophilia

Reflect on your life with hemophilia. Your answers will be included in your personalized summary at the end of the tool for you to print and bring to your healthcare team. On a scale of 0 to 100, rate how much you agree with these statements.

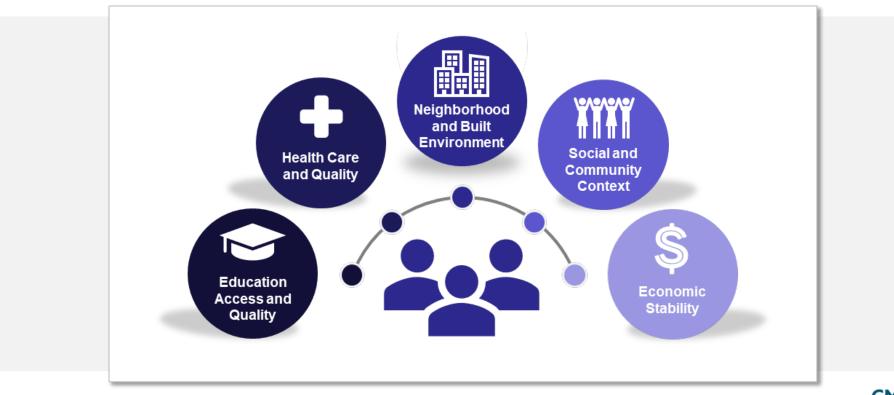
WFH. https://sdm.wfh.org. NBFD. coreHEM MHO PROM instrument. https://www.hemophilia.org/research/research-projects/corehem-mental-health-tool.

What Is Shared Decision Making?

A process wherein:


A patient shares with the provider all their aspirations, relevant values, preferences, and goals. A health care provider shares with a patient all relevant information and best scientific evidence on the pros and cons of all potential treatment options.

With this mutual understanding, the **patient and provider decide** the best course of action.



Importance of Patient Education

- Involve the multidisciplinary team
- Take into account patient's
 - Development stage
 - Health literacy
 - Cultural background
 - Other social determinants of health (SDoH)

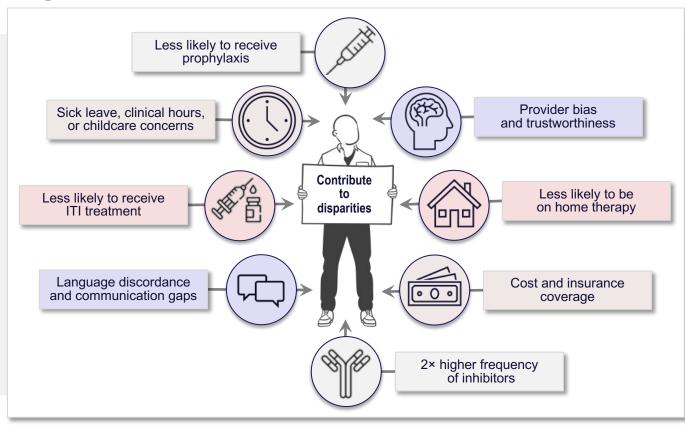
Understand Social Determinants of Health

U.S. Department of Health and Human Services. Healthy People 2030. https://health.gov/healthypeople/priority-areas/social-determinants-health.

OUTFITTERS

SDoH (...cont'd)

Economic Stability	Neighborhood and Physical Environment	Education	Food	Community and Social Context	Health Care System
Employment	Housing	Literacy	Hunger	Social integration	Health coverage
Income	Transportation	Language	Access to healthy options	Support systems	Provider availability
Expenses	Safety	Early childhood education		Community engagement	Provider linguistic and cultural competency
Debt	Parks	Vocational training		Discrimination	Quality of care
Medical bills	Playgrounds	Higher education		Stress	
Support	Walkability				
	Zip code/ geography				


Health Outcomes

Mortality, morbidity, life expectancy, health care expenditures, health status, functional limitations

U.S. Department of Health and Human Services. Healthy People 2030. https://health.gov/healthypeople/priority-areas/social-determinants-health.

Contributors to Racial and Ethnic Disparities in Hemophilia Care and Outcomes

CME

What Is Shared Decision Making?

A process wherein:

A patient shares with the provider all their aspirations, relevant values, preferences, and goals. A health care provider shares with a patient all relevant information and best scientific evidence on the pros and cons of all potential treatment options.

With this mutual understanding, the **patient and provider decide** the best course of action.

Hemophilia Foundation Australia. 2023. https://www.haemophilia.org.au/national-haemophilia/no-223-september-2023/wfh-shared-decision-making-tool/. Velentino LA, et al. J Haem Pract. 2021;8(1):69–79.

Questions & Answers

- Stay current with transformational changes in hemophilia management, including FVIIIa mimetics, TFPI inhibitors, ATsiRNA, and APC inhibition
- Where applicable, follow risk mitigation strategies to ensure safe use of novel therapies
- Assess and implement emerging monitoring strategies for nonfactor therapies
- Implement shared decision making with patients to improve quality of care, adherence to therapies, and outcomes

To receive CME/CE credit Complete the post-test and evaluation

HEMOSTASIS 2.0 Rethinking Hemophilia Management with Novel Agents and Shared Decision Making

Supported by an educational grant from Novo Nordisk, Inc.