

Global Perspectives on Diagnosis and Management of Childhood Epilepsy Disorders: Focus on Dravet, Lennox-Gastaut, and Tuberous Sclerosis Complex

This program is supported by an independent medical education grant from Jazz Pharmaceuticals, Inc.

JOINTLY ACCREDITED PROVIDER *

In support of improving patient care, CME Outfitters, LLC, is jointly accredited by the Accreditation Council for Continuing Medical Education (ACCME), the Accreditation Council for Pharmacy Education (ACPE), and the American Nurses Credentialing Center (ANCC), to provide continuing education for the healthcare team.

Engage with us via Twitter!

Follow us on Twitter! @CMEOutfitters for upcoming CME/CE opportunities, health care news, and more

Elaine C. Wirrell, MD, FAAN, FRCPC

Chair and Professor of Child Neurology Program Director of Child and Adolescent Neurology Mayo Clinic Rochester, MN

Tracy Dixon-Salazar, PhD

Executive Director, Lennox-Gastaut Syndrome (LGS) Foundation San Diego, CA

D. Samba Reddy, PhD, RPh, FAAAS, FAAPS, FAES

Regents Professor, Neuroscience and Experimental Therapeutics Director, Institute of Pharmacology and Neurotherapeutics Professor, Engineering Medicine, Biomedical Engineering Texas A&M University School of Medicine Bryan, TX

Adam Strzelczyk, MD, MHBA

Consultant Neurologist and Intensivist Epilepsy Center Frankfurt Rhine-Main Department of Neurology Goethe-University Frankfurt and University Hospital Frankfurt Frankfurt am Main, Germany

Bethany Thomas, DNP

Epilepsy Nurse Practitioner Neurology NP Clinical Coordinator Penn Medicine, Neurology Department Philadelphia, PA

Learning Objective

Utilize appropriate investigations to achieve early and accurate diagnosis of early-onset seizure disorders, including LGS, DS, and TSC.

DE, EE, or DEE?

Developmental Encephalopathy (DE):

- Developmental impairments due to underlying cause of the epilepsy
- Epilepsy itself does not contribute to impairments

Epileptic Encephalopathy (EE):

- Cognitive and/or behavioral impairments directly caused by frequent seizures or epileptiform discharges
- Impairments not present prior to epileptic onset

Developmental and Epileptic Encephalopathy (DEE):

- Impairments due to BOTH underlying cause of the epilepsy AND frequent seizures or epileptiform discharges
- Epilepsy often drug-resistant, and comorbidities are common

Scheffer IE, et al. *Epilepsia*. 2017;58(4):512-521. Raga S, et al. *Epileptic Disord*. 2021;23(1):40-52. Specchio N, Curatolo P. *Brain*. 2021;144(1):32-43. Scheffer IE, Liao J. *Eur J Paediatr Neurol*. 2020;24:11-14.

Early-Onset DEEs

Scheffer IE, Liao J. *Eur J Paediatr Neurol.* 2020;24:11-14. Zuberi SM, et al. *Epilepsia.* 2022;63(6):1349-1397. Specchio N, et al. *Epilepsia.* 2022;63(6):1398-1442. Riney K, et al. *Epilepsia.* 2022;63(6):1443-1474.

DS, TSC, LGS Early Recognition

Syndrome	Etiology	Key Onset Features	Comments
Dravet Syndrome (DS)	SCNA1 variant voltage-gated sodium channel structure	Intractable focal or generalized convulsive seizures Seizures can be febrile or afebrile and sensitive to vaccination	Other seizure types appear over time including, atypical absence, myoclonic, and atonic
Tuberous Sclerosis Complex (TSC)	TSC1 or TSC2 mutation mTOR signaling of cell size and proliferation	Infantile spasms and/or focal seizures, including focal to bilateral tonic-clonic Multiple benign tumors (hamartomas), especially in brain, eyes, skin, kidneys, heart, and lungs	Often detectable prior to seizure onset Can be underlying cause of other epilepsy syndromes
Lennox- Gastaut Syndrome (LGS)	Variable structural brain abnormalities, pathogenic gene variant	Multiple intractable seizure types, including tonic and 1+ others (GTC, atypical absence, atonic, spasms, etc.) Diffuse slow spike-and-wave pattern on interictal EEG	10-30% evolve from earlier onset epilepsy syndromes Generalized paroxysmal fast activity in sleep common on EEG

EEG = electroencephalograph; GTC = generalized tonic-clonic. Strzelczyk A, Schubert-Bast S. CNS Drugs. 2022;36(10):1079-1111. Specchio N, et al. *Epilepsia*. 2022;63(6):1398-1442. Zuberi SM, et al. *Epilepsia*. 2022;63(6):1349-1397

Patient Case: Ella (11-month-old female)

CC/HPI: Frequent seizures despite treatment

- Unremarkable pregnancy and delivery at 35 weeks gestation
- 8 months: Treated for RSV; Mother reported multiple episodes of "shivering" with fluctuating alertness
- 9 months: Presented to ED with febrile left-sided to bilateral tonic-clonic seizure x 25 min
 - No epileptic activity identified on EEG
 - Labs and exams all WNL
 - Prescribed only rescue diazepam
- 10 months: Pediatrician documented right-sided hemiclonic seizure x 15 min
 - Started on levetiracetam
 - EEG, MRI, and CSF all WNL

CC = chief complaint; CSF = cerebrospinal fluid; ED = emergency department; HPI = history of present illness; MRI = magnetic resonance imaging; RSV = respiratory syncytial virus; WNL = within normal limits

Audience Response

Which investigation should be performed next to identify the etiology of Ella's seizures?

A. Genetic epilepsy panel
B. Continuous EEG monitoring
C. PET/CT with tracer
D. Immunoglobulins blood test
E. I'm unsure

Dravet Syndrome Diagnosis

	IF: 2		2- to 15-months-old		Dev	Developmentally normal		
			AND one or more occur with or without fever or recent vaccination:					recent vaccination:
	Focal or generalized convulsive, prolonged seizure(s) or status epileptic			vulsive, epilepticus	Brief, recurrent hemiclonic or convulsive seizures			
	AND all WNL		all WNL:	MRI	Lab stud	ies	+/- CSF studies	
		THEN:		Perform (Can be part	targeted SC of epilepsypane	N1A te l; NGS s	esting for DS uperior to Sanger)	
Alerts: Lack of fever sensitivity, positive response to sodiur			to sodium-channel agents					
Exclusionary:			History o	History of epileptic spasms or focal lesions				

NGS = next generation sequencing. Wirrell EC, et al. *Epilepsia*. 2022;63(7):1761-1777. Zuberi SM, et al. *Epilepsia*. 2022;63(6):1349-1397. Lee J, et al. *Ann Clin Lab Sci*. 2020;50(5):625-637.

Patient Case: Kai (20-month-old male)

CC/HPI: Developmental delays, possible seizures

- Normal development until ~18-months-old
 - Makes verbal noises but no expressive language
 - Crawls, scoots, and stands with support but no independent walking
- Parents report multiple episodes of staring spells
- Physical exam reveals 2 hypopigmented macules on trunk (ovoid, ~1.5 cm, no signs of scale or inflammation, no color change when pressed)
- Neurological exam reveals mild spasticity in lower limbs and bilateral retinal hemartomas

You suspect TSC and order an EEG and MRI.

HemadyN, Noble C. Am Fam Physician. 2007;75(7):1053-1054. Ryu S, et al. Yonsei Med J. 2023;64(2):133-138.

Audience Response

What finding would confirm a diagnosis of TSC in Kai?

A. Temporal sharp-wave spikes on EEG
B. Hypsarrhythmia on EEG
C. Multiple cortical tubers on MRI
D. Hippocampal atrophy on MRI
E. I'm unsure

TSC Diagnosis

Blaghootio ontonia

Definite TSC:

Confirmed genetic criteria OR ≥ 2 major features OR 1 major + ≥ 2 minor features

Possible TSC:

1 major feature OR ≥ 2 minor features OR *Only angiomyolipomas + LAM major features

Notes:

Infantile spasms/seizures + any clinical feature should trigger suspicion of TSC.

Major Features

 \geq 2 Cortical tubers +/or radial migration lines "Confetti" skin lesions \geq 3 Hypomelanotic macules \geq 5mm across \geq 4 Dental enamel pits \geq 2 Ungual fibromas \geq 2 Intraoral fibromas \geq 2 Retinal hamartomas Retinal achromatic patch Shagreen patch \geq 2 Renal cysts Cardiac rhabdomyoma Sclerotic bone lesions Nonrenal hamartomas Subependymal giant cell astrocytoma (SEGA) **Genetic Criteria** \geq 2 Subependymal nodules (SEN) Pathogenic variant in \geq 3 Angiofibromas or fibrous cephalic plaques TSC1 or TSC2 gene ≥ 2 Angiomyolipomas* Note: Negative DNA test Lymphangioleiomyomatosis (LAM)* NOT exclusionary

Northrup H, Krueger DA. *Pediatr Neurol*. 2013;49(4):243-254. Northrup H, et al. *Pediatr Neurol*. 2021;123:50-66. Staley BA, et al. *Pediatrics*. 2011;127(1):e117-e125.

Minor Features

Patient Case: Sam (3-year-old female)

CC/HPI: Frequent, intractable seizures despite treatment

- Diagnosed with West syndrome/infantile spasms at 8-months-old
 - Hypsarrhythmia noted on EEG
 - No etiology identified with neuroimaging or genetic testing at that time
 - Failed multiple antiseizure medications (ASM); ~50% frequency reduction with clobazam
- Parents report new episodes of unresponsive staring in recent months, and tonic "spasms" now last minutes instead of seconds
- Moderate developmental delays apparent on exam, including limited ability to communicate and lack of independent walking

 Background diffuse theta-delta slowing + interictal generalized slow spike-andwave complexes (< 2.5 Hz) noted on EEG

Audience Response

Which of Sam's signs/symptoms is most supportive of a diagnosis of LGS?

- A. Moderate developmental delays
- B. Unresponsive staring episodes
- C. Diffuse theta-delta slowing
- D. Generalized slow spike-and-wave complexes

E. I'm unsure

LGS Diagnosis

Mandatory		Alerts	
Tonic seizures (often more prominent in sleep)		Photoparoxysmal response at low frequencies (consider CLN2 disease)	
21 additional seizure type, which may include:			
 Atypica Atonic Myoclosi 	 Focal impaired awareness Epileptic spasms Nonconvulsive status epilepticus 	Syndrome-in-evolution : ~50% of infants with a severe DEE evolve to LGS over time	
•GTC	(remains a risk at any age)	> 8 years old at onset	
Generalized slow spike-and-wave complexes		No developmental impairments	
< 2.5 Hz (or history of this finding on prior EEG)		Exclusionary	
Generalized paroxysmal fast activity in sleep (or history of this finding on prior EEG)		Persistent focal abnormalities without generalized spike-and-wave pattern	
Notes:	Neuroimaging and genetic testing not required for diagnosis but helpful for evaluating etiology and guiding treatment.		

Incorporate patient/caregiver QoL assessments and treatment goals into team-based management of early-onset epilepsy syndromes.

Savannah's LGS Journey (Age 1-5 years)

Warren AEL, et al. Neurology. 2019;93(3):e215-e226.

Savannah's LGS Journey (Age 5-18 years)

LGS

Age 5-18 years old

of Seizures: > 40,000
Years to Get LGS Diagnosis: 3 years
Years to Find Etiology: 15
Neurologists: 7
Treatments Tried: 26
Hospitalizations: 15
Surgeries: 5
Rescue Med Uses/Month: 2-5
Monthly drug cost: \$1,640
Emergency med use: \$183 / dose
Last stay: \$53,475

LGS + DEE + IDD + + Intractable Epilepsy + Unknown Etiology

Seizures (all the time!):

- Weekly status & clusters/SUDEP
- Frequent aspiration pneumonia
- Regular ER visits & hospitalizations
- Brain matter atrophy

Developmental Delay/Intellectual Disability

(Inability to safely navigate the world):

- Behavior:
 - Aggression
 - Temper tantrums
 - Inattention
 - OCD
- Academic/Communications Issues:
 - Can't read or write
 - Speech & language delay/slurred
 - Inability to communicate needs
 - Memory issues/psychological slowing
- Mobility & Physical Care Issues
 - Severely off balance/low tone
 - Can't walk long distances
 - Doesn't dress, toilet, feed self

Sleep Issues:

IMPACT

- Excessive Daytime Sleepiness
- Nocturnal seizures
- Excessive Nighttime Waking

Constipation Low Bone Density Social Isolation Weight Loss Liver Issues

The Whole Family:

- Sibling issues
- Sleep issues
- Social isolation
- Financial challenges
- Access to care challenges
- Caregiver fatigue

Warren AEL, et al. Neurology. 2019;93(3):e215-e226.

Savannah's LGS Evolution (Age 18-29 years)

High QoL

Our Hierarchy of Needs

(Age 5-18 years)

Avoiding Crisis Unassisted by Caregivers Independently Eat, Sleep, Drink, Potty, Take Meds

Avoiding Crisis

Coping

Safet

Sunival

Breathe. Eat, Sleep, Drink, Toilet, Take Medicines, Safe

Crisis Seizures, Status Epilepticus, Injury, Infection, Respiratory Distress

Low QoL

LGS Age 18-29 years old

Age 18 95% reduction in seizures on verapamil 99% reduction in clusters/status epilepticus STARTED LEARNING AGAIN!!! Savannah is now 29!

Caregiver/Family QoL Impacts

Inability to make plans

Managing complex medical care (appointments, specialists, medications, etc.)

Battling system-level barriers (insurance, finances, advocacy)

Educating self, family, outside caregivers (school, home nurse)

Balancing impacts/needs of other family members

Stranger in home (home nurse)

Monitoring seizures, behavior, cognition, sleep (SUDEP), diet

Chronic Traumatic Stress

Constant stress overload

Constant fear/anxiety/worry

Self-sacrifice and guilt about not doing enough

Chronic sleep deprivation, 24/7 exhaustion

Wear on relationships (marriage, siblings, friends)

Isolation and depression

Loss of hope

Fear for the future

"Surviving- Not thriving"

DEE QoL Correlates and Priorities

Conway L, et al. *Epilepsia*. 2016;57(8):1256-1264. Chiang S, et al. *Epilepsy Behav*. 2021;123:108282. Chiang S, et al. *Epilepsia*. 2023;64(1):170-183. Lagae L, et al. *Dev Med Child Neurol*. 2018;60(1):63-72. Zöllner JP, et al. *Neurol Res Pract*. 2021;3(1):35. Makiello P, et al. *Epilepsia*. 2023;64(4):1012-1020

Examine the role of pharmaceutical CBD in antiepileptic therapy, including outcomes data, formulation/dosing considerations, augmentation strategies, and regulatory requirements.

Psychobehavioral and Cognitive Adverse Events of ASMs in DEE

DEE	Classification	Caution			
DEE	Class I-II	Class III-IV	Caution		
DS	Valproate Topiramate Stiripentol* Clobazam Cannabidiol* Fenfluramine*	Bromide Levetiracetam Zonisamide Ethosuximide Perampanel Brivaracetam	Predominant sodium channel blockers Gabapentinoids Tiagabine Vigabatrin	(
LGS	Valproate Topiramate* Lamotrigine* Rufinamide* Clobazam* Cannabidiol* Fenfluramine*	Felbamate* Levetiracetam Zonisamide Ethosuximide Perampanel Brivaracetam	Carbamazepine Oxcarbazepine Gabapentinoids Phenytoin	(
тѕс	Vigabatrin* Everolimus" Cannabidiol*	Seizure type(s) dependent	Seizure type(s) dependent		
Notes	*Carries approved indication for specified condition				

Strzelczyk A, Schubert-Bast S. CNS Drugs. 2022;36(10):1079-1111. Wirrell EC, et al. Epilepsia. 2022;63(7):1761-1777. Strzelczyk A, Schubert-Bast S. CNS Drugs. 2022;36:217–237. Northrup H, et al. Pediatr Neurol. 2021;123:50-66. Montouris G, et al. Epilepsy Behav. 2020;110:107146. Strzelczyk A, Schubert-Bast S. CNS Drugs. 2021;35(1):61-83.

Antiepileptic Mechanisms of CBD

CBD Product Comparison

	Pharmaceutical-grade CBD	Artisanal CBD	Medical Cannabis
Contents	100mg/mL highly purified CBD	Defined as hemp product containing < 0.3% THC	Whole plant cannabis or extracts containing a mix of cannabinoids
Psychoactivity	None	Possible	Yes
Regulatory approval	Federally approved treatment for seizures associated with DS, TSC, and LGS	Classified as agricultural product (not approved to treat or prevent any disease)	Variable and complex legal status
Evidence for efficacy	Multiple randomized, controlled trials and real-world studies	Not translatable to individual products	Limited with significant safety concerns
Quality control	Highly regulated and standardized to guarantee purity, consistency, and accurate dosing	None	None
Access	Available by prescription through designated specialty pharmacies	Widely available	Legal and logistical barriers vary

CBD: Long-term Safety and Efficacy

Four-year results from CBD expanded access program for treatment-resistance epilepsies (DS, TSC, LGS): Treatment response rates for (A) convulsive and (B) total seizures

AEs in ≥ 20%: diarrhea (33%), seizure (24%), somnolence (23%; 33% w/ clobazam, 13% w/o clobazam); 7% D/C'd due to AEs

BECOME Survey of Caregiver Reported Improvements:

Seizure related: frequency (84%), severity (68%), seizure-free days per week (67%), convulsive seizures (72%), drop seizures (71%), nonconvulsive/nondrop seizures (68%), night-time seizures (62%), use of rescue meds (57%), ED visits (54%), hospitalization (53%), and seizure-related injuries (48%)

Non-seizure related: emotional functioning (82%), cognition and executive function (81%), language and communication in non-verbal (79%) and verbal patients (74%), activities of daily living (51%), sleep (51%), and physical functioning (46%)

Szaflarski JP, et al. Epilepsia. 2023;64(3):619-629. Kühne F, et al. Epilepsia Open. 2023;10.1002/epi4.12699. Dixon Salazar T, et al. Neurology. 2022;98(18)884

SMART Goals Specific, Measurable, Attainable, Relevant, Timely

- Recognize and investigate early signs and symptoms of developmental and epileptic encephalopathies to achieve timely diagnosis.
- Routinely assess patient/caregiver QoL and adapt care plans accordingly to address evolving needs and priorities.
- Educate patients/caregivers as needed on the roles of pharmaceutical-grade cannabidiol within a care plan.

To Ask a Question

Please select the Ask Question tab below the slide viewer.

Please include the faculty member's name if the question is specifically for them.

Questions & Answers

To Receive Credit

To receive CME/CE credit for this activity, participants must complete the post-test and evaluation online.

Click on the *Request Credit* tab to complete the process and print your certificate.

Visit the Virtual Education Hub

Free resources and education to educate health care professionals and patients.

https://www.cmeoutfitters.com/practice/virtualeducation-hub/