Achieving Optimal Outcomes in Patients with Narcolepsy:

Aligning Treatment Goals with Patients

Supported by Jazz Pharmaceuticals, Inc.

CME Outfitters, LLC, is the accredited provider for this continuing education activity.

Follow us on Twitter! @CMEOutfitters for upcoming **CME/CE** opportunities, health care news, and more

Richard Bogan, MD, FCCP, FAASM

President, Bogan Sleep Consultants, LLC

Associate Clinical Professor University of South Carolina School of Medicine Columbia, SC

Associate Clinical Professor Medical University of South Carolina Charleston, SC

Michael J. Thorpy, MD

Professor of Neurology Albert Einstein College of Medicine Bronx, NY

Director, Sleep-Wake Disorders Center Department of Neurology Montefiore Medical Center Bronx, NY

President, New York State Society of Sleep Medicine

Past President of the Sleep Section, Academy of Neurology

Terri E. Weaver, PhD, RN, FAAN, ATSF, FAASM

Dean Emerita Professor Emerita of Biobehavioral Nursing Science College of Nursing University of Illinois Chicago Chicago, IL **Professor Emerita of Nursing University of Pennsylvania** Philadelphia, PA

Julie Flygare, JD

President & CEO, Project Sleep Author, *Wide Awake and Dreaming: A Memoir of Narcolepsy* Los Angeles, <u>CA</u> Explain the patient's journey with narcolepsy, including the extensive impact of work, psychosocial, and daily functioning to overall health.

LEARNING OBJECTIVE

How often do you discuss the challenges of living with narcolepsy with your patients?

- A. 0% of the time
- B. 1%-25% of the time
- C. 26%-50% of the time
- D. 51%-75% of the time
- E. 76%-100% of the time

Multifaceted Impact of Narcolepsy^{1,2}

Worsened HRQoL

Memory problems

HRQoL = health-related quality of life

1. Waldman LT, et al. Health Qual Life Outcomes. 2020;18:128. 2. Morse AM. Med Sci (Basel). 2019;7(12):106.

throughout the day

Impaired

critical thinking

Impaired social life and isolation

Increased risk of accidents while driving

Poor school performance

Brain fog

Comorbidities Associated with Narcolepsy^{1,2}

1. Thorpy MJ, et al. Sleep Med. 2015;16(1):9-18.2. Black J, et al. Sleep Med. 2017;33:13-18.

Disturbed Nocturnal Sleep by the Numbers

In a sample of 248 patients with NT1, disturbed nocturnal sleep severity was associated with higher scores on the Narcolepsy Severity Scale, higher sleepiness, anxiety/depressive symptoms, autonomic dysfunction, and worse quality of life.²

1. Sturzenegger C, et al. J Sleep Res. 2004;13(4):395-406. 2. Barateau L. et al. Sleep. 2022;zsac054.

Living with Narcolepsy: The Patient Perspective

In a survey of 200 individuals living with narcolepsy:

Harmony Biosciences, et al. Know Narcolepsy website. 2021. https://know narcolepsy.com/impact-of-narcolepsy.

Living with Narcolepsy: Patient and Clinician Perspectives

In a survey of 200 patients and 251 physicians:

Symptoms are mostly or completely under control

12.0% of patients agree

27.5% of clinicians agree

Alter lives to accommodate symptoms 40% of patients avoid social situations 20% of patients avoid strong emotions 93.6% of clinicians say patients unknowingly do this

EDS is a major disruptive symptom

87.5% of patients agree

92.0% of clinicians agree

EDS = excessive daytime sleepiness

Now, how often will you discuss the challenges of living with narcolepsy with your patients?

- A. 0% of the time
- B. 1%-25% of the time
- C. 26%-50% of the time
- D. 51%-75% of the time
- E. 76%-100% of the time

Analyze the practice implications of using evidence-based screening tools and diagnostic criteria to accelerate the early, accurate diagnosis of narcolepsy.

LEARNING OBJECTIVE

What percentage of your patients with narcolepsy were initially misdiagnosed?

- A. 0% of patients
- B. 1%-25% of patients
- C. 26%-50% of patients
- D. 51%-75% of patients
- E. 76%-100% of patients

How familiar are you with best practices to implement diagnostic criteria and evidence-based screening tools into routine practice to detect and diagnose narcolepsy?

- A. Not familiar at all
- B. Somewhat familiar
- C. Familiar
- D. Extremely familiar

Predictors of Diagnostic Delays

Children¹

- Strongest predictor \rightarrow pediatric onset of symptoms
- Manifestation in children and adolescents

Adults and Children²

- Comorbid sleep disorders
- Comorbid psychiatric disorders
- Presence of sleep-related hallucinations

- Media portrayal and presentation
- Gap in physician knowledge
- Absence of cataplexy

ICSD-3 Diagnostic Criteria for NT1 and NT2

Criteria in red must be met for NT1 and NT2

Narcolepsy Type 1

- Narcolepsy with cataplexy
- EDS for at least 3 months (with validated questionnaires such as ESS)
- At least one of the following:
 - Cataplexy and a positive MSLT*
 - Low mean sleep latency < 8 mins</p>
 - ≥ 2 SOREMPs on MSLT-PSG
 - Low CSF hypocretin-1 concentrations (≤ 110pg/ml or < 1/3 of normal)</p>

*Positive MSLT: mean sleep latency of < 8 minutes and \geq 2 SOREMPs

CSF = cerebrospinal fluid; EDS = excessive daytime sleepiness; ESS = Epw orth Sleepiness Scale; MSLT = Multiple Sleep Latency Test; NT1 = narcolepsy type 1; NT2 = narcolepsy type 2; OSAS = obstructive sleep apnea syndrome; PSG = polysomnogram; SOREMPs = sleep onset REM periods

ICSD-3 Diagnostic Criteria for NT1 and NT2

Criteria in red must be met for NT1 and NT2

Narcolepsy Type 1

- Narcolepsy <u>with</u> cataplexy
- EDS for at least 3 months (with validated questionnaires such as ESS)
- ► At least one of the following:
 - Cataplexy and a positive MSLT*
 - ► Low mean sleep latency < 8 mins
 - ▶ \geq 2 SOREMPs on MSLT-PSG
 - ► Low CSF hypocretin-1 concentrations (≤ 110pg/ml or < 1/3 of normal)</p>

Narcolepsy Type 2

- Narcolepsy <u>without</u> cataplexy
- EDS for at least 3 months
- Positive MSLT*
 - Low mean sleep latency < 8 mins</p>
 - ≥ 2 SOREMPs on MSLT-PSG
- CSF hypocretin-1 concentrations
 - > 110pg/ml if measured
- Hypersomnolence and MSLT findings not better explained by other causes:
 - Insufficient sleep, OSAS, delayed sleep phase, drug intake/withdrawal

*Positive MSLT: mean sleep latency of < 8 minutes and \geq 2 SOREMPs

CSF = cerebrospinal fluid; EDS = excessive daytime sleepiness; ESS = Epw orth Sleepiness Scale; MSLT = Multiple Sleep Latency Test; NT1 = narcolepsy type 1; NT2 = narcolepsy type 2; OSAS = obstructive sleep apnea syndrome; PSG = polysomnogram; SOREMPs = sleep onset REM periods

Sateia MJ. Chest. 2014;146(5):1387-1394.

movement; SOREMPs = sleep onset REM periods

Differential Diagnosis

► EDS

OSAS

- Sleep deprivation/poor sleep hygiene
- Depression
- Substance/drug intake
- ▶ IH, KLS
- PLMD
- Circadian rhythm abnormality
 - Behavioral symptoms of EDS
 - Irritability, poor attentiveness,
 - aggression, hallucinations

IH = idiopathic hypersomnia; KLS = Kleine-Levin syndrome; OSAS = obstructive sleep apnea syndrome; PLMD = periodic limb movement disorder

Differential Diagnosis

► EDS

- OSAS
- Sleep deprivation/poor sleep hygiene
- Depression
- Substance/drug intake
- ▶ IH, KLS
- PLMD
- Circadian rhythm abnormality
 - Behavioral symptoms of EDS
 - Irritability, poor attentiveness, aggression, hallucinations

IH = idiopathic hypersomnia; KLS = Kleine-Levin syndrome; OSAS = obstructive sleep apnea syndrome; PLMD = periodic limb movement disorder

Cataplexy

- Typical cataplexy
 - Video record if possible
- Seizure, hypotension, psychogenic

Differential Diagnosis

► EDS

- OSAS
- Sleep deprivation/poor sleep hygiene
- Depression
- Substance/drug intake
- ▶ IH, KLS
- PLMD
- Circadian rhythm abnormality
 - Behavioral symptoms of EDS
 - Irritability, poor attentiveness, aggression, hallucinations

Cataplexy

- Typical cataplexy
 - Video record if possible
- Seizure, hypotension, psychogenic

- Hallucinations
 - Schizophrenia
 - Night terrors
 - Panic attacks

IH = idiopathic hypersomnia; KLS = Kleine-Levin syndrome; OSAS = obstructive sleep apnea syndrome; PLMD = periodic limb movement disorder

Nevsimalova S. *Curr Neurol Neurosci Rep.* 2014;14(8):469. Warman J, et al. *Neurology*. 2013;80(7 Suppl):S43.003. Dauvilliers Y, et al. *Neurol Neurosurg Psychiatry*. 2003;74(12):1667-1673. Zhou J, et al. *Shanghai Arch Psychiatry*. 2014; 26(4):232-235.

How often do you assess treatment efficacy on functional status and QoL in your patients with narcolepsy?

- A. 0% of the time
- B. 1% 25% of the time
- C. 26% 50% of the time
- D. 51% 75% of the time
- E. 76% 100% of the time

Self-Report Measures Can Be Used in Clinical Practice

Epworth Sleepiness Scale (ESS)

- The ESS is the most frequently used, validated self-report assessment of a patient's sleepiness¹
- On a 4-point scale, patients rate their likelihood of falling asleep during 8 different situations (reading, driving, etc.)²
- The ESS can also be used to monitor the progression of or improvement in sleepiness over time³

Swiss Narcolepsy Scale (SNS)

- The SNS is a validated self-report assessment of a patient's sleepiness
- On a 5 item, 5-point scale, patients rate the frequency of individual symptoms (EDS and cataplexy)
- The SNS has a high sensitivity and specificity in identifying NT1⁴ (particularly compared to ESS)
- Each answer is weighted by a positive or negative factor; score of < 0 is suggestive of narcolepsy with cataplexy
- A two-item short form version (sSNS) also available demonstrating discriminative power for NT1⁵

Self-Report Measures Can Be Used in Clinical Practice (cont.)

Functional Outcomes of Sleep Questionnaire (FOSQ)

- The FOSQ (or shorter FOSQ-10) assesses the effect of sleepiness on daily functioning
- Evaluates 5 domains
 - General productivity
 - Activity level
 - Vigilance
 - Social outcomes
 - Intimate/sexual relationships

Subjective measures rely on patients to accurately report their own sleepiness; however, they are:

- Practical for monitoring progression or improvement in EDS
- · Simple to administer

Narcolepsy Diagnosis and Pitfalls

- Subtleties of diagnosis
- Interpreting diagnostic tests
- Partial cataplexy
- Comorbidity with other sleep disorders is common:
 - ~25% of patients with narcolepsy also have OSA
- ► 82% of patients with narcolepsy receive a diagnosis ≥ 1 year from symptom onset; one-third > 10 years

Sateia MJ. *Chest*. 2014;146(5):1387-1394. Sansa G, et al. *Sleep Med*. 2010;11(1):93-95. Black J, et al. *Sleep Med*. 2017;33:13-18. Maski K, et al. *J Clin Sleep Med*. 2017;13(3):419-425.

Now, how familiar are you with best practices to implement diagnostic criteria and evidence-based screening tools into routine practice to detect and diagnose narcolepsy?

- A. Not familiar at all
- B. Somewhat familiar
- C. Familiar
- D. Extremely familiar

Audience Response

Now, how often will you assess treatment efficacy on functional status and QoL in your patients with narcolepsy?

- A. 0% of the time
- B. 1% 25% of the time
- C. 26% 50% of the time
- D. 51% 75% of the time
- E. 76% 100% of the time

Panel Discussion

Integrate strategies to mitigate CV risk associated with narcolepsy in treatment decision-making.

LEARNING OBJECTIVE

How confident are you in your ability to reduce cardiovascular risks or mitigate cardiovascular burden when making treatment selections for your patients with narcolepsy?

- A. Not confident at all
- B. Somewhat confident
- C. Confident
- D. Extremely confident

Cardiovascular Impact of Narcolepsy

In patients with narcolepsy vs. controls, higher risks of:

- ► Stroke¹: 2.5X
- ► Heart disease²: 2.1X
- ► Hypertension²: 1.3X
- ► Hypercholesterolemia²: 1.5X

In patients with narcolepsy* (n = 12,816) vs. controls $(n = 38,441)^3$:

- CVD without hypertension
- ► MACE
- ► Heart failure
- Stroke

*per 1,000 person-years.

- CVD = cardiovascular disease; MACE = major adverse cardiac event
- 1. Black J, et al. *Sleep Med.* 2017;33:13-18. 2. Ohayon MM. *Sleep Med.* 2013;14(6):488-492. 3. Ben-Joseph R, et al. *Neurology*. 2022;98(Suppl 18):1203. 4. Ohayon MM, et al. *Sleep*. 2014;37(3):439-444.

- y of: 1.5X $lepsy^* = 38,441)^3$: Ischemic stroke
- Edema A composite of stroke, atrial fibrillation, and edema

Mortality in narcolepsy (n = 77,616) vs. non-narcolepsy controls $(n = 176,234,879)^4$:

- Incidence: 1.5X
- Sex differences:
 - ► Female, 0.99%
 - ► Male, 1.43%

Higher rates stratified by age from 25-34 years to 75+ years

The Role of Orexin in Narcolepsy and CVD

- ▶ Roughly 90% of orexin-producing neurons are lost in human narcolepsy with cataplexy¹
- It's thought that an autoimmune process kills the orexin neurons¹
 - HLA linked to many autoimmune diseases; the strongest known HLA association is with narcolepsy
 - Carrying this gene increases narcolepsy risk ~200-fold
- Animal studies indicate orexin A and B and orexin receptors 1 and 2 present throughout the myocardium and centrally²
 - Increased cardiac dysfunction and myocardial scarring are associated with a deficiency in orexin 2 with narcolepsy phenotype³
- ► Endothelial dysfunction is induced by chronic sleep fragmentation²
 - Administering orexin decreases sleep fragmentation and severity of atherosclerosis
 - Sleep fragmentation causes orexin deficiency

HLA = human leukocyte antigens

Narcolepsy and CVD: Take It With A Grain of Salt

- Hypertension is the leading global risk factor for disease and death¹
- One size does not fit all when it comes to recommending lower sodium diets, as methods used to assess sodium intake have been criticized for inaccuracy¹

Largest contributors to global DALYs^{1,2}

- High systolic blood pressure (212 million)
- Smoking (149 million)
- ► High fasting plasma glucose (143 million)
- High body mass index (120 million million)
- Childhood undernutrition (113 million)
- ► Alcohol use, high total cholesterol, and high sodium diets

DALYs = disability adjusted life years

1. Kjeldsen SE, et al. Blood Pressure. 2017;26(2):65-66. 2. GBD 2015 Risk Factors Collaborators. Lancet. 2016;388(10053):1659-1724.

Treatment Considerations for Patients With or At-Risk for CVD

- Improving nutrition
 - DASH diet
 - Diet lower in sodium
- Increasing physical activity
- Reducing or slowing down rise of BMI
- Anti-hypertensive agents

BMI = body mass index; DASH = Dietary Approaches to Stop Hypertension Kjeldsen SE, et al. *Blood Pressure*. 2017;26(2):65-66.

Now, how confident are you in your ability to reduce cardiovascular risks or mitigate cardiovascular burden when making treatment selections for your patients with narcolepsy?

- A. Not confident at all
- B. Somewhat confident
- C. Confident
- D. Extremely confident

Panel Discussion

Implement evidencebased strategies for the initiation and/or switching of therapies to improve and sustain patient QoL and psychosocial and work functioning.

LEARNING OBJECTIVE

How confident are you initiating treatment for narcolepsy in patients with medical and/or psychiatric comorbidities?

- A. Not confident at all
- B. Somewhat confident
- C. Confident
- D. Extremely confident

How confident are you switching medications (e.g., from a stimulant to a non-stimulant) for patients with narcolepsy experiencing persistent symptoms with initial therapy?

- A. Not confident at all
- B. Somewhat confident
- C. Confident
- D. Extremely confident

Treatment Goals in Narcolepsy

Control nightmares and hallucinations, sleep paralysis, and DNS

Optimize risk/benefit of pharmacotherapies

Thorpy MJ, et al. Sleep Med. 2015;16(1):9-18.

Improve psychosocial dysfunction and quality of life

Improve safety of patient and public

Control cataplexy

Realistic Goals for Realistic Outcomes

- What should the patient expect?
- What should the clinician expect?

Feeling "better" with a chronic condition

What people think it looks like

What it actually looks like

Narcolepsy: The Four Pillars of Treatment

Strategies to Empower Patients

- Utilizing updates on the safety, efficacy, and tolerability of current therapies to personalize treatment selection^{1,2}
- Shared Decision Making^{1,2}
 - Several medications may be needed to control symptoms
 - Collaborate with the patient to establish goals, create a plan, routinely assess progress, and adjust the patient's regimen as needed
- Collaborate with the patient to determine:
 - Cataplexy triggers
 - Limitations
 - A management plan for narcolepsy and other illnesses

1. Schneirder-Kamp A, et al. Health (London). 2020;24(6):625-645. 2. Werbrouck A, et al. Transl Behav Med. 2018;8(5):660-674.

Encourage Questions

Am I receiving the correct dose?

Is this medication a good match?

In addition to medication, what else can I do to help my symptoms?

What do I tell my doctor?

If I experience side effects, what should I do?

Personalizing Treatment Selection and Monitoring Patients with Narcolepsy

- Patient's needs and preferences
- Severity of EDS
- Comorbidities
- Cardiovascular risk

- Polypharmacy, including use of oral contraceptives
- Strategies for dose initiation, and modification, and cross-titration
- Adherence
- Carryover effects
- Use and interpretation of measures of patient-reported outcomes to monitor treatment efficacy

FDA-Approved* Treatments for Narcolepsy

Drug	МОА	Dose	EDS	Cataplexy	Adults	Children
Modafinil	Dopamine (DA) reuptake inhibitor	100-400 mg	Х		Х	
Armodafinil	DA reuptake inhibitor	50-250 mg	Х		Х	
Solriamfetol	DA-norepinephrine (NE) reuptake inhibitor	75-150 mg	Х		Х	
Pitolisant	Histamine H3 antagonist/inverse agonist	8.9-35.6 mg	Х	Х	Х	
Sodium oxybate (SXB) / lower sodium oxybate (LXB)	GABA _B agonist	4.5-9.0 g (twice-nightly dosing)	Х	Х	Х	Х
Amphetamines / Methylphenidate	Sympathomimetic; enhance DA, NE, serotonin	Varies			Х	Х

* LXB is approved for narcolepsy, but it does not appear in the updated guidelines. Amphetamines and methylphenidate are approved for narcolepsy but not specifically cataplexy or EDS.

Barateau L, et al. Ther Adv Neurol Disord. 2019;12:1756286419875622.

Safety Considerations for FDA-Approved Treatments for EDS and Cataplexy in Narcolepsy

Drug	Schedule	Common AEs (≥ 5%) and Safety Considerations		
Modafinil / Armodafinil	IV	AEs	Anxiety, back pain, diarrhea, dizziness, dyspepsia, headache, insomnia, and nausea	
		SCs	May reduce effectiveness of HC agents; may \uparrow HR and diastolic and systolic BP	
Solriamfetol	IV	AEs	Anxiety, decreased appetite, headache, insomnia, and nausea	
		SCs	Precautions regarding BP and HR \uparrow ; no effect on birth control	
Pitolisant	-	AEs	Anxiety, insomnia, and nausea	
		SCs	May \downarrow effectiveness of HCs; may \uparrow QTc; not a controlled substance	
SXB / LXB	III	AEs	Adults: Anxiety, decreased appetite, diarrhea, dizziness, headache, hyperhidrosis, parasomnia, and vomiting; Peds: <code>↓</code> appetite, dizziness, enuresis, headache, vomiting, and weight decrease	
		SCs	High sodium formulation may be contraindicated in patients at risk for CVD events; LXB formulation may be ideal in those with CVD risks; common, early onset AEs are generally of short duration and ↓ over time	
Amphetamines / Methylphenidate	II	AEs	Dry mouth, upset stomach, loss of appetite, weight loss, headache, dizziness, tremors, tachycardia, elevated BP, insomnia, and mood changes	
		SCs	High potential for misuse; serious cardiovascular events	

↓ = decrease; ↑ = increase; AEs = adverse events; BP = blood pressure; HC = hormonal contraceptives; HR = heart rate; QTc = QT interval; SCs = safety considerations

Drugs@FDA Website. Meskill GJ, et al. Sleep. 2020;43(Suppl 1):A291. Setnik B, et al. Sleep. 2020;43(4):zsz252. Husain AM, et al. J Clin Sleep Med. 2020;16(9):1469-1474. Dauvilliers Y, et al. Sleep. 2020;43:A286.

Solriamfetol: Efficacy in Narcolepsy

- TONES trials demonstrated efficacy in reducing propensity to sleep and maintaining wakefulness (compared to PBO)
 - Significant improvements in MWT sleep latencies
 - Significant reductions in ESS
 - Significantly greater improvements in patient's and clinician's global impression of change
- Effective in treating EDS in patients with narcolepsy regardless of cataplexy status
- Long-term treatment associated with sustained improvements in functional status, work productivity, and QoL
- Common early onset TEAEs are limited in duration

PBO = single-blind placebo; QoL = quality of life; TEAEs = treatment-emergent adverse events; TONES = treatment of OSA and narcolepsy excessive sleepiness

Rosenberg R, et al. J Clin Sleep Med. 2022;18(1):235-244. Abad VC. Nat Sci Sleep. 2021;13:75–91. Dauvilliers Y, et al. CNS Drugs. 2020;34:773-784. Weaver TE, et al. J Sleep Med. 2021;17(10):1995–2007.

Pitolisant: Efficacy in Narcolepsy

- HARMONY trials demonstrated robust therapeutic effects in EDS and cataplexy attacks (vs PBO)
 - Significant reductions in ESS scores
 - ► Significant ≥50% in weekly cataplexy attacks
 - Initial treatment response within 2-3 weeks of starting treatment
- In patients with high EDS burden, significant reductions in EDS and cataplexy observed

Sodium Oxybate: Efficacy in Narcolepsy

- Comparable efficacy of SXB for EDS and cataplexy shown in pediatric and adult populations
- LXB later t_{max}, and a lower C_{max}, but a similar AUC compared with SXB
 - Pharmacokinetic properties similar in adults and children with narcolepsy
- In pediatrics:
 - In double-blind, PBO-controlled, randomized withdrawal study, participants assigned to PBO and withdrawn from SXB had significant worsening of cataplexy and EDS compared to those continuing SXB

AUC = area under the curve

Lower-Sodium Oxybate: Efficacy

- In double-blind randomized withdrawal study, cataplexy attacks and EDS worsened significantly in PBO group but remained stable in those who continued LXB
 - Significant reductions in ESS scores in LXB group vs PBO
 - Significant reductions in frequency of cataplexy attacks and increase of cataplexy-free days in LXB group vs PBO
 - Significant worsening of Patient Global Impression of Change, Clinical Global Impression of Change, and QoL measures in PBO group vs LXB group
- Reduction in cataplexy and increased cataplexy-free days observed during initiation/optimization of LXB and taper/discontinuation of prior antidepressants/anticataplectics

Bogan RK, et al. *Sleep.* 2021;44(3):zsaa206. Dauvilliers Y, et al. *Nat Sci Sleep.* 2022;14:531-546. Thorpy MJ, et al. *CNS Drugs.* 2020;34(1):9-27. Dauvilliers Y, et al. *CNS Drugs.* 2022;36(6):633-647.

Dosing Regimens for LXB in Narcolepsy

Adults w/ narcolepsy

Initial dosage

4.5 g/night, divided into 2 doses
(bedtime and 2.5-4 hours later)

Children ≥ 7 years w/ narcolepsy

Initial dosage

- 20 kg to < 30 kg: <u><</u> 2 g/night
- 20 kg to < 45 kg: <u><</u> 3 g/night
- ≥ 45 kg: ≤ 4.5 g/night
- Divide into 2 doses (at bedtime and 2.5-4 hours later)

Patients transitioning from sodium oxybate

Initial dosage

 Same gram for gram dose as sodium oxybate

Max recommended dose

- 6-9 g/night for adults
- 6 g/night for 20 to < 30 kg children
- 7.5 g/night for 30 to < 45 kg children
- 9 g/night for \geq 45 kg children

When Initial Treatment Fails...

- Reasons for treatment modification:
 - Suboptimal efficacy
 - Coexisting medical and/or psychiatric comorbidities
 - Insurance costs
- Strategies to modify treatment
 - Dose titration
 - Direct switch
 - Adjunctive
 - Taper and switch
 - Cross-taper

Now, how confident are you initiating treatment for narcolepsy in patients with medical and/or psychiatric comorbidities?

- A. Not confident at all
- B. Somewhat confident
- C. Confident
- D. Extremely confident

Now, how confident are you switching medications (e.g., from a stimulant to a non-stimulant) for patients with narcolepsy experiencing persistent symptoms with initial therapy?

- A. Not confident at all
- B. Somewhat confident
- C. Confident
- D. Extremely confident

Panel Discussion

- At each visit, actively engage patients to share their lived experience with narcolepsy and the impact of treatment on their psychosocial functioning and QoL
- Use evidence-based tools and diagnostic criteria to improve the detection and accurate diagnosis of narcolepsy in children and adults
- Take a patient-centric approach to the management of narcolepsy
- Implement best practices to mitigate CV risks initiating treatment for narcolepsy, monitoring for treatment effectiveness, and switching when initial therapy fails

QUESTIONS ANSWERS

Thank you for joining us. Don't forget to collect your credit.

Visit the Sleep Disorders Hub

Free resources and education to educate health care professionals and patients on sleep disorders

https://www.cmeoutfitters.com/sleepdisorders-hub/

To Receive Credit

To receive CME/CE credit for this activity, participants must complete the post-test and evaluation online.

Click on the *Request Credit* tab to complete the process and print your certificate.