

### The Role of Antibody Drug Conjugates in Advanced Non-Small Cell Lung Cancer: Guidance for Today and the Path Forward

Supported by an educational grant from Daiichi Sankyo, Inc.

CME Outfitters, LLC, is the accredited provider for this continuing education activity.

### Claim ABIM MOC Credit 3 Steps to Complete

- 1. Actively participate in the meeting by **responding to questions** (It's okay if you miss answering a question or get them wrong; you can still claim MOC)
- 2. Complete your post-test and evaluation at the conclusion of the webcast
- Be sure to fill in your ABIM ID number and DOB (MM/DD) on the evaluation so we can submit your credit to ABIM





## CME for MIPS Improvement Activity

Required Steps to Claim CME Credit as an MIPS Improvement Activity

- Actively participate by responding to ARS questions
- Complete activity post-test and evaluation at the link provided
- Over the next 90 days, actively work to incorporate improvements in your clinical practice from this presentation
- Complete the follow-up survey from CME Outfitters in approximately 3 months

CME Outfitters will send you confirmation of your participation to submit to CMS attesting to your completion of a CME for MIPS Improvement Activity







## Hossein Borghaei, DO, MS

Chief, Division of Thoracic Medical Oncology Professor, Department of Hematology/Oncology Gloria and Edmund M. Dunn Chair in Thoracic Oncology Fox Chase Cancer Center Temple Health Philadelphia, PA



## Enriqueta Felip, MD, PhD

Section in Chief, Medical Oncology Department Head, Thoracic Oncology Unit Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology Associate Professor of Medicine Barcelona, Spain



## David E. Gerber, MD

Professor of Internal Medicine and Population & Data Sciences University of Texas Southwestern Medical Center Associate Director of Clinical Research Harold C. Simmons Comprehensive Cancer Center at UT Southwestern Dallas, TX



## Learning Objective

Apply molecular testing to identify predictive biomarkers for targeted therapy in advanced NSCLC.



## Learning 2 Objective

Evaluate rationale for emerging therapies in advanced or metastatic NSCLC.



## Learning **3** Objective

Employ best practices to manage lung cancer during the COVID-19 pandemic.

## Mutation Testing for Metastatic NSCLC

## Audience Response

# Which of the following genomic alterations are recommended for molecular testing in NSCLC?

- A. ALK
- B. BRAF
- C. EGFR
- D. All of the above



## Which of the following genomic alterations are recommended for molecular testing in NSCLC?





## **Audience Response**

# What is the observed rate of HER2 mutations in lung adenocarcinoma?

- A. 0% (none)
- **B**. 2%-4%
- C. 8%-10%
- D. I don't know



## What is the observed rate of HER2 mutations in lung adenocarcinoma?





## **NSCLC: Complex Picture**



Li T, et al. *J Clin Oncol*. 2013;31(8):1039-1049.; Bubendorf L, et al. *Eur Respir* Rev. 2017;26(144):170007.; Zappa C, Mousa SA. *Transl Lung Cancer Res*. 2016;5(3):288-300. Brainard J, Farver C. *Mod Pathol*. 2019;32(1):16-26.



# Advanced NSCLC: Biomarkers and Actionable Mutations



Gregory LR. J Natl Compr Canc Netw. 2017;15(5S):686-688.; Kim SY, Halmos B. Lung Cancer Manag. 2020;9(3):LMT36.



## **Targeting Actionable Mutations in NSCLC**



Kris MG, et al. JAMA. 2014;311(19):1998-2006.; Tsao AS, et al. J Thoracic Oncol. 2016;11(5):613-638.

#### **Current NCCN Guideline Testing Recommendations Include Testing for Many Gene Mutations**



<sup>a</sup>See Principles of Pathologic Review (NSCL-A). <sup>c</sup>Temel JS, et al. *N Engl J Med.* 2010;363:733-742. <sup>kk</sup>If there is insufficient tissue to allow testing for all of *EGFR, ALK, ROS1, BRAF, NTRK 1/2/3, MET*, and *RET*, repeat biopsy and/or plasma testing should be done. If these are not feasible, treatment is guided by available results and, if unknown, these patients are treated as though they do not have driver oncogenes. <sup>II</sup>See Principles of Molecular and Biomarker Analysis (NSCL-H).

<sup>mm</sup>The NCCN NSCLC Guidelines Panel strongly advises broader molecular molecular profiling with the goal of identifying rare driver mutations for which effective drugs may already be available, or to appropriately counsel patients regarding the availability of clinical trials. Broad molecular profiling is a key component of the improvement of care of patients with NSCLC. See Emerging Biomarkers to Identify Patients for Therapies (NSCL-I). NNLAM VK, et al. *Clin Lung Cancer.* 2019;20:30-36.e3; Sands JM, et al. *Lung Cancer.* 2020;140:35-41.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

ESMO = European Society for Medical Oncology; NCCN = National Comprehensive Cancer Network Velcheti V, Pennell NA. *Ann Transl Med.* 2017;5(18):378.; National Comprehensive Cancer Network. NCCN. 2020. https://www.nccn.org/professionals/physician\_gls/pdf/nscl.pdf.; Good Science Better Medicine Best Practice. ESMO. 2020. https://www.esmo.org/guidelines/lung-and-chest-tumours/clinical-practice-living-guidelines-metastatic-non-small-cell-lung-cancer.

## **Comparison of Molecular Assays for Biomarker Detection in NSCLC**

| Variant Types                       |                    |                               |                            |                |                    |                    |
|-------------------------------------|--------------------|-------------------------------|----------------------------|----------------|--------------------|--------------------|
| Molecular Methods                   | Point<br>Mutations | Small Deletion,<br>Insertions | Copy Number<br>Alterations | Rearrangements | Sensitivity<br>(%) | Turnaround<br>Time |
| Sizing assays                       | +/-                | $\checkmark$                  |                            |                |                    | 2-3 days           |
| PCR and Sanger sequencing           | $\checkmark$       | $\checkmark$                  |                            |                | 20-50              | 3-4 days           |
| PCR and pyrosequencing              | $\checkmark$       | +/-                           |                            |                | 20-50              | 3-4 days           |
| PCR and mass spectrometry           | $\checkmark$       | +/-                           |                            |                | 1-10               | 3-4 days           |
| PCR and single-base extension       | $\checkmark$       |                               |                            |                | 1-10               | 3-4 days           |
| qPCR and digital PCR                | $\checkmark$       | $\checkmark$                  |                            | $\checkmark$   | .00001             | 2-3 days           |
| Allele-specific PCR                 | $\checkmark$       |                               |                            |                |                    | 1-2 days           |
| FISH                                |                    |                               | +/-                        | $\checkmark$   | < 1                | 2-3 days           |
| NGS: targeted amplicon capture      | $\checkmark$       | $\checkmark$                  |                            |                | 1-10               | 7-10 days          |
| NGS: targeted hybridization capture | $\checkmark$       | $\checkmark$                  | $\checkmark$               | +/- 1          | 1-5                | 15-20 days         |
| NGS: whole exome                    | $\checkmark$       | $\checkmark$                  | $\checkmark$               | +/- 1          | Variable           | Weeks              |
| NGS: whole genome                   | $\checkmark$       | $\checkmark$                  | $\checkmark$               | $\checkmark$   | Variable           | Weeks              |

FISH = fluorescent in situ hybridization; NGS = next-generation sequencing; PCR = polymerase chain reaction; qPCR = quantitative PCR Pennell NA, et al. *Am Soc Clin Oncol Educ Book*. 2019;(39):531-542.



## Detecting Genomic Alterations in Advanced NSCLC-NGS

- ESMO recommends using tumor multigene NGS in patients presenting with advanced non-squamous NSCLC
- NCCN recommends NGS testing be performed via a broad, panel-based approach, most typically performed by NGS, when feasible
- High concordance with liquid biopsy (ctDNA) with tissue-based mutation analysis



#### List of Genomic Alterations Level I/II/III According to ESCAT in Advanced Non-squamous

| Gene                 | Alteration                                                                                                                                                                                                                | Prevalence                                                             | ESCAT                 |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------|
| EGFR                 | Common mutations ( <i>Del</i> 19, <i>L858R</i> )<br>Acquired <i>T790M</i> exon 20<br>Uncommon <i>EGFR</i> mutations ( <i>G719X</i> in exon 18,<br><i>L861Q</i> in exon 21, <i>S7681</i> in exon 20)<br>Exon 20 insertions | 15% (50%-60% Asian)<br>60% of <i>EGFR</i> mutant<br>NSCLC<br>10%<br>2% | IA<br>IA<br>IB<br>IIB |
| ALK                  | Fusions (mutations as mechanism of resistance)                                                                                                                                                                            | 5%                                                                     | IA                    |
| MET                  | Mutations exon 14 skipping<br>Focal amplifications (acquired resistance on EGFR<br>TKI in <i>EGFR</i> -mutant tumors)                                                                                                     | 3%<br>3%                                                               | IB<br>IIB             |
| <i>BRAF</i><br>V600E | Mutations                                                                                                                                                                                                                 | 2%                                                                     | IB                    |
| ROS1                 | Fusions (mutations as mechanism of resistance)                                                                                                                                                                            | 1%-2%                                                                  | IB                    |
| NTRK                 | Fusions                                                                                                                                                                                                                   | 0.23%-3%                                                               | IC                    |
| RET                  | Fusions                                                                                                                                                                                                                   | 1%-2%                                                                  | IC                    |
| KRAS <sup>G12C</sup> | Mutations                                                                                                                                                                                                                 | 12%                                                                    | IIB                   |
| ERBB2                | Hotspot mutations<br>Amplifications                                                                                                                                                                                       | 2%-5%                                                                  | IIB                   |
| BRCA 1/2             | Mutations                                                                                                                                                                                                                 | 1.2%                                                                   | IIIA                  |
| PIK3CA               | Hotspot mutations                                                                                                                                                                                                         | 1.2%-7%                                                                | IIIA                  |
| NRG1                 | Fusions                                                                                                                                                                                                                   | 1.7%                                                                   | IIIB                  |

ESCAT = ESMO scale for Clinical Actionability of molecular targets

Mosele F, et al. Ann Oncol. 2020;31(11):1491-1505.; Remon J, et al. JCO Precis Oncol. 2019;3:PO.18.00211. ; NCCN. NSCLC v1.2021. https://www.nccn.org/professionals/physician\_gls/pdf/nscl.pdf.



## **NSCLC Genetic Driver Mutation** Identification by NGS



| Tissue NGS                  | Plasma NGS                                                    |  |
|-----------------------------|---------------------------------------------------------------|--|
| Slower turnaround time      | Faster turnaround time                                        |  |
| High concordance<br>(89.6%) | Negative result is not<br>confirmatory<br>(60.6% concordance) |  |

2 cases (-) in tissue NGS was (+) in plasma NGS



Turnaround time of plasma and tissue NGS; Plasma samples, n = 210; tissue samples, n = 107; The paired turnaround times were compared by a two-sided Wilcoxon signed-rank test



## **Evolving Role of NGS in NSCLC**

- Potential to help manage NSCLC in all stages of cancer
- ctDNA sensitivity is low in early stages but high in advanced stages
- cfDNA capable of identifying all guideline genomic biomarkers



|                                                                  |        |                         | cfDNA                             |                         | Tissue                            |
|------------------------------------------------------------------|--------|-------------------------|-----------------------------------|-------------------------|-----------------------------------|
| Guideline-<br>Recommended<br>Genomic<br>Biomarkers<br>(Selected) | TCGA   | % of<br>Total<br>Cohort | Frequency of<br>Alteration<br>(%) | % of<br>Total<br>Cohort | Frequency<br>of Alteration<br>(%) |
| EGFR mutation                                                    | 11.30% | 15.20%                  | 16.00%                            | 14.20%                  | 17.30%                            |
| ALK fusion                                                       | 1.30%  | 2.10%                   | 2.20%                             | 3.20%                   | 4.00%                             |
| ROS1 fusion                                                      | 1.70%  | 0.00%                   | 0.00%                             | 0.70%                   | 1.20%                             |
| BRAF mutation<br>(V600E)                                         | 7.00%  | 0.70%                   | 0.70%                             | 0.70%                   | 2.10%                             |
| RET fusion                                                       | 0.90%  | 1.10%                   | 1.10%                             | 0.00%                   | 0.00%                             |
| ERBB2 mutation                                                   | 1.70%  | 1.10%                   | 1.10%                             | 0.40%                   | 1.60%                             |
| MET exon 14<br>skipping variant                                  | 4.30%  | 3.50%                   | 3.70%                             | 1.80%                   | 7.50%                             |
| MET amplification                                                | 2.20%  | 5.30%                   | 5.60%                             | 0.40%                   | 1.60%                             |
| KRAS mutation                                                    | 32.20% | 31.60%                  | 33.20%                            | 8.50%                   | 32.90%                            |

Guibert N, et al. Eur Respir Rev. 2020;29(155):190052.; Leighl NB, et al. Clin Cancer Res. 2019;25(15):4691-4700.

## Receptor Signaling in NSCLC: Druggable Targets



Nature Reviews | Disease Primers



CME Outfitters

## **HER2 in Lung Adenocarcinoma**

- Protein overexpression (IHC 2+ or 3+) in 12%-20% of cases
- Amplification in  $\sim 3\%$  of cases, around 10% of cases in EGFR TKI resistance
  - HER2 amplification and mutations usually do not occur together
- Activating mutations in  $\sim 2\%$ -4% of cases
- How to define HER2-positive lung cancer?
- Which of them are suitable for treatment with anti-HER2 agents?



## ADCs in NSCLC

## Mechanism and Characteristics of ADCs in NSCLC An Animated Tour

## ADCs Deliver Lethal Payloads to the Target



- A. Antigen access via circulation
- B. Antigen binding
- C. Antigen-ADC complex internalization
- D. Incorporation into endosomal vesicles
- E. Processing along endosomal-lysosomal pathway
- F. Degradation in acidic and proteolytic rich environment
- G. Intracellular release of cytotoxic compound



## **ADCs Can Extend the Therapeutic Window**



Compared to conventional chemotherapy, ADCs can  $\uparrow$  efficacy and  $\downarrow$  toxicity:

- Targeted delivery of drugs to cancer cells →
   ↑ drug doses in tumor microenvironment →
   ↓ minimum effective dose (MED)
- Fewer drug molecules within normal, non-target tissues → ↑ maximum tolerated dose (MTD)



## Tumor and ADC Characteristics Impact Efficacy and Toxicity

#### **Tumor Characteristics**

- Target antigen highly expressed on tumor
- Limited expression of target antigen on healthy tissues
- Target antigen not shed at high levels
- Target antigen-ADC complex internalized upon binding

Target antigen should be highly expressed on tumor cells with limited expression on healthy tissues
Antibody should have high affinity and avidity for tumor

antigen



#### **ADC Characteristics**

- Antibody has high affinity, avidity for target antigen
- Linker stable in circulation but efficiently releases payload inside tumor cell
- Highly potent drug



## **Case Study: Meet Joanna**

 Joanna is a 66-year-old woman with relapsed small cell lung cancer (SCLC) after platinumetoposide and topotecan



- Treated with anti-DLL3 antibody-drug conjugate 4/2017-6/2017
- Excellent response to therapy but subsequent development of target-related toxicities of pleural, pericardial effusions

# Select ADCs in NSCLC and Other Solid Tumors

| Target         | ADC                                           | Tumors                                | Clinical Trial Number    | Phase |
|----------------|-----------------------------------------------|---------------------------------------|--------------------------|-------|
| Axl            | BA3011 (CAB-AXL)                              | NSCLC, other solid tumors             | NCT03425279              | I, II |
| Axl            | Enapotamab vedotin                            | NSCLC, other solid tumors             | NCT02988817              | I, II |
| B7-H3          | MGC018                                        | NSCLC, other solid tumors             | NCT03729596              | I, II |
| CD166          | CX-2009                                       | NSCLC, other solid tumors             | NCT03149549              | I, II |
| CD205/Ly75     | MEN1309                                       | Metastatic NSCLC, other solid tumors  | NCT03403725              | I     |
| CD71           | CX-2029                                       | NSCLC, other solid tumors             | NCT03543813              | I, II |
| cMet           | ABBV-399 (telisotuzumab vedotin)              | NSCLC                                 | NCT02099058, NCT03539536 | I     |
| cMet           | SHR-A1403                                     | NSCLC, other solid tumors             | NCT03856541              | I     |
| cMet           | TR1801                                        | NSCLC, other solid tumors             | NCT03859752              | I     |
| EGFR           | AVID100                                       | NSCLC, other solid tumors             | NCT03094169              | I, II |
| HER2           | A166                                          | Lung cancer, other HER2+ cancers      | NCT03602079              | I, II |
| HER2           | DS-8201a                                      | NSCLC, HER2 positive                  | NCT03505710, NCT02564900 | II    |
| HER2           | FS-1502 (trastuzumab monomethyl auristatin F) | NSCLC, breast and other solid tumors  | NCT03944499              | I     |
| HER2           | SYD985 (trastuzumab vc-seco-DUBA)             | NSCLC, other solid tumors             | NCT02277717              | I     |
| HER2           | XMT-1522                                      | NSCLC, breast cancer                  | NCT02952729              | I     |
| HER3           | U3 1402                                       | NSCLC                                 | NCT03260491              | I     |
| IGF-1R         | W0101                                         | NSCLC, other solid tumors             | NCT03316638              | I, II |
| mesothelin     | BAY 94-9343 (anetumab ravtansine)             | NSCLC, mesothelin positive, others    | NCT01439152, NCT03455556 |       |
| mesothelin     | BMS-986148                                    | NSCLC, other solid tumors             | NCT02341625              | I, II |
| ROR2           | BA3021 (CAB-ROR2)                             | NSCLC, other solid tumors             | NCT03504488              | I, II |
| SLC34A2/NaPi2b | XMT1536                                       | NSCLC, ovarian cancer                 | NCT03319628              | Ì     |
| Trop-2         | IMMU-132 (sacituzumab govitecan)              | SCLC, NSCLC, other epithelial cancers | NCT01631552              | I, II |



## ADCs Targeting Select Genomic Alterations in NSCLC

| ADC                               | Target | Phase (CT)                     |
|-----------------------------------|--------|--------------------------------|
| Trastuzumab emtansine (T-DM1)     | HER2   | II (NCT02289833)               |
| Trastuzumab emtansine (T-DM1)     | HER2   | II, in progress (NCT02675829)  |
| Trastuzumab deruxtecan (DS-8201a) | HER2   | I, in progress (NCT02564900)   |
| Trastuzumab deruxtecan (DS-8201a) | HER2   | II, in progress (NCT03505710)  |
| U3-1402                           | HER3   | I, in progress (NCT03260491)   |
| Telisotuzumab vedotin (ABBV-399)  | c-Met  | I/Ib in progress (NCT02099058) |
| DS-1062                           | TROP2  | I, in progress (NCT03401385)   |
| Sacituzumab govitecan             | TROP2  | I (NCT01631552)                |



### Trastuzumab Emtansine (T-DM1) in Previously Treated HER2 Metastatic NSCLC (NCT02289833)

- Phase II
- Previously treated advanced HER-2 overexpressing (IHC 2+ or 3+)
- Age ≥ 18
- All patients received T-DM1 (3.6 mg/kg intravenously every 3 weeks)
- Median treatment duration was 3.6 months (0-24.8 months)

|                                               | T-DM1<br>(N = 49) |
|-----------------------------------------------|-------------------|
| Any AE                                        | 45 (92%)          |
| Serious AE                                    | 10 (20%)          |
| Withdrawal due to AE                          | 2 (4%)            |
| Death as a result of AE                       | 0                 |
| Death as a result of AE related to study drug | 0                 |



## Efficacy of T-DM1 in Previously Treated HER2 Metastatic NSCLC



|           | T-DM1                               |                                     |  |
|-----------|-------------------------------------|-------------------------------------|--|
| Parameter | Patients with<br>IHC 2+<br>(N = 29) | Patients with<br>IHC 3+<br>(N = 20) |  |
| CR        | 0                                   | 0                                   |  |
| PR        | 0                                   | 4 (20%)                             |  |
| SD        | 8 (28%)                             | 4 (20%)                             |  |
| PD        | 16 (55%)                            | 11 (55%)                            |  |
| DCR       | 8 (28%)                             | 8 (40%)                             |  |
| ORR       | 0                                   | 4 (20%)                             |  |
| PFS       | 2.6 months                          | 2.7 months                          |  |

CR = complete remission; DCR = disease control rate; ORR = objective response rate; PD = progressive disease; PFS = progression free survival; PR = partial remission; SD = stable disease

Peters S, et al. Clin Cancer Res. 2019;25(1):64-72.

# T-DM1 in HER2-Mutant Lung Cancers (NCT02675829):Ongoing Trial

- Phase II basket trial
- Patients with metastatic lung adenocarcinoma
- Median age 64 (47-74)
- All patients received T-DM1 (3.6 mg/kg intravenously every 3 weeks
- Median treatment duration was 4 months

|                                               | T-DM1<br>(N = 18)                                        |
|-----------------------------------------------|----------------------------------------------------------|
| Any AE                                        | YES<br>Elevated AST, ALT (39%)<br>Thrombocytopenia (33%) |
| Serious AE                                    | YES<br>Grade 3-4 anemia (6%)                             |
| Withdrawal due to AE                          | 0                                                        |
| Death as a result of AE                       | 0                                                        |
| Death as a result of AE related to study drug | 0                                                        |



## Efficacy of T-DM1 in HER2-Mutant Lung Cancers



6

Partial response start

12 13

8 9 10 11

Time on Treatment (months)

| Parameter | T-DM1<br>(N = 18) |
|-----------|-------------------|
| CR        | 0                 |
| PR        | 8 (44%)           |
| SD        | 7 (39%)           |
| PD        | 3 (17%)           |
| DCR       | 15 (83%)          |
| ORR       | 8 (44%)           |
| PFS       | 5 months          |



Li BT, et al. J Clin Oncol. 2018;36(24):2532-2537.

2 3

## Study Update: T-DM1 in HER2-Mutant and/or **Amplified Lung Cancers (NCT02675829)**

• N = 49 (including 18 from previous report)



5 months

PFS

and HER2 amplifications



#### Trastuzumab deruxtecan(T-DXd) Targeting HER2 in Multiple Advanced Solid Tumors (NCT02564900): Ongoing Trial

- Phase I dose expansion in pre-treated HER-2–expressing (IHC≥ 1+) patients
- Median age 59
- Median treatment duration 10.6 months
- HER2 mutation 61.2% (11/18)
- Most common *HER2* mutations among patients with NSCLC were exon 20 insertions 44.4% (8/18)
- Among the 18 patients with NSCLC, 27.8% (5/18) had received a prior HER2-targeted regimen, 22.2% (4/18) had received a prior EGFR inhibitor, and 5.6% (1/18) had received a prior anaplastic lymphoma kinase inhibitor

|                                               | T-DXd (DS-8201)<br>(N = 18)<br>NSCLC |
|-----------------------------------------------|--------------------------------------|
| Any AE                                        | 18 (100%)                            |
| Serious AE related to study drug              | 2 (11.2%)                            |
| Withdrawal due to AE                          | NR                                   |
| Death as a result of AE                       | 1 (5.6%)                             |
| Death as a result of AE related to study drug | 1 (5.6%)                             |



Tsurutani J, et al. Cancer Discov. 2020;10(5):688-701.

## Efficacy of T-DXd Targeting HER2 in Multiple Advanced Solid Tumors





|           | T-DXd (DS-8201)          |                                                    |  |
|-----------|--------------------------|----------------------------------------------------|--|
| Parameter | All Patients<br>(N = 18) | Patients with<br>HER-2 Mutant<br>NSCLC<br>(N = 11) |  |
| CR        | 0                        | 0                                                  |  |
| PR        | 10 (55.6%)               | 8 (72.7%)                                          |  |
| SD        | 4 (22.2%)                | 2 (18.2%)                                          |  |
| PD        | 3 (16.7%)                | 1 (9.1%)                                           |  |
| DCR       | 14 (77.8%)               | 10 (90.9%)                                         |  |
| ORR       | 10 (55.6%)               | 8 (72.7%)                                          |  |
| PFS       | 11.3 months              |                                                    |  |



### T-DXd in HER2-Mutatated Metastatic NSCLC (DESTINY-Lung01) (NCT03505710): Ongoing Trial

- Phase II in patients with non-squamous NSCLC with HER2overexpressing or HER2-activating mutants
- Median age 63 (34-83)
- 6.4 mg/kg every 3 weeks
- Median treatment duration 7.75 months
- Data presented for HER-2 mutated group
- Most common *HER2* mutations in the kinase domain (90.5%)
- Most patients (90.5%) had prior platinumbased therapy and 54.8% had anti PD-1 or PD-L1 treatment

|                                               | T-DXd (DS-8201)<br>(N = 42) |
|-----------------------------------------------|-----------------------------|
| Any AE                                        | 42 (100%)                   |
| Serious AE related to<br>study drug 22 (52.4% |                             |
| Withdrawal due to AE                          | 10 (23.8%)                  |
| Death as a result of AE                       | 0                           |
| Death as a result of AE related to study drug | 0                           |

| Parameter | N = 42    |
|-----------|-----------|
| ORR       | 61.9%     |
| PFS       | 14 months |



Smit EF, et al. J Clin Oncol. 2020;38(suppl).Abstract No. 9504.

## **HER3 Targeting ADCs in NSCLC**

- HER3 (ERBB3) is a member of the EGFR family
- Dimerizes with HER2 to activate oncogene signalling via PI3K/AKT, MAPK and JAK/STAT pathways
- HER3 activation leads to treatment failure
- Target for ADCs in multiple malignancies





## Patritumab Deruxtecan (U3-1402) Targeting HER3 in EGFR-Mutated NSCLC (NCT03260491): Ongoing Trial

- Phase I dose escalation and dose expansion in advanced EGFRm NSCLC after failure of EGFR TKI and platinum-based chemotherapy
- Age ≥ 18 (United States) or ≥ 20 (Japan)
- Median treatment cycles 3 (1-19)
- 28 patients continuing at data cutoff

|                                               | Patritumab Deruxtecan<br>(U3-1402) (N = 56)    |
|-----------------------------------------------|------------------------------------------------|
| Any AE                                        | YES                                            |
| Serious AE related to study drug              | YES<br>Thrombocytopenia 25%<br>Neutropenia 16% |
| Withdrawal due to AE                          | 0                                              |
| Death as a result of AE                       | 0                                              |
| Death as a result of AE related to study drug | 0                                              |



# Efficacy of U3-1402 Targeting HER3 in EGFR-Mutated NSCLC: Ongoing Trial

- 5.6 mg/kg
- 22/56 (39%) patients had best percentage decrease in sum of tumor diameters ≥ 30%
- Efficacy was observed in patients with several mechanisms of resistance including EGFR, C797S, MET amp, HER2m, BRAF fusion, and PIK3CAm

| Parameter | Patritumab Deruxtecan<br>(U3-1402)<br>(N = 56) |
|-----------|------------------------------------------------|
| CR        | 1 (2%)                                         |
| PR        | 13 (23%)                                       |
| SD        | 25 (45%)                                       |
| PD        | 9 (16%)                                        |
| DCR       | 39 (70%)                                       |
| ORR       | 14 (25%)                                       |





## Faculty Discussion

## **c-MET Targeting ADCs in NSCLC**

- c-MET is an HGF receptor
- Activation leads to excessive cell proliferation via multiple pathways including PI3K/AKT, RAS/ERK/MAPK and Wnt/β-catenin
- Overexpression/mutation of c-MET in NSCLC may lead to tumor invasion and metastasis





## Telisotuzumab Vedotin (ABBV-399/Teliso-V) Targeting c-Met in Patients with Advanced Solid Tumors (NCT02099058): Ongoing Trial

- Phase I dose escalation study in advanced solid tumors including NSCLC
- NSCLC with c-MET + IHC H-score ≥ 150)
- 0.15 mg to 3.3 mg/kg
- IV dosing every 3 weeks

|                                               | ABBV-399/Teliso-V<br>(N = 48)<br>NSCLC (N = 16) |
|-----------------------------------------------|-------------------------------------------------|
| Any AE                                        | 46 (96%)                                        |
| Serious AE related to study drug              | 2 (4%)                                          |
| Withdrawal due to AE                          | 11 (22.9%)                                      |
| Death as a result of AE                       | 4 (8%)                                          |
| Death as a result of AE related to study drug | 0 (0)                                           |



## Efficacy of ABBV-399 Targeting c-Met in Patients with Advanced Solid Tumors



|           | ABBV-399/Teliso-V                              |  |  |
|-----------|------------------------------------------------|--|--|
| Parameter | Patients with cMet-<br>Positive NSCLC (N = 16) |  |  |
| CR        | 0                                              |  |  |
| PR        | 3 (18.8%)                                      |  |  |
| SD        | 6 (37.5%)                                      |  |  |
| PD        | 5 (31.3%)                                      |  |  |
| DCR       | 9 (56.3%)                                      |  |  |
| ORR       | 18.8 %                                         |  |  |
| PFS       | 5.7 months                                     |  |  |



Strickler JH, et al. J Clin Oncol. 2018;36(33):3298-3306.

### Trophoblast Cell-Surface Antigen 2 (TROP2) Targeting ADCs in NSCLC

- TROP2 is a glycoprotein which mediates cell proliferation, growth and calcium mobilization via a complex network of signalling pathways
- Overexpression correlates with poor prognosis in some malignancies including NSCLC



### DS-1062 in Targeting TROP2 in Advanced NSCLC (NCT03401385): Ongoing Trial

- Phase I dose escalation and dose expansion with unresectable NSCLC refractory to/relapsed from standard treatment with measurable disease (RECIST v1.1) and available tumor for retrospective TROP2 evaluation were eligible
- Age  $\geq$  18 (United States) or  $\geq$  20 (Japan)
- Median treatment cycles 3 (1-19)
- Treatment was well tolerated up to 8 mg/kg, and a dose effect on antitumor activity was observed over 2.0-10.0 mg/kg in heavily pretreated patients with prior progression on standard treatment

|                                               | (DS-1062)<br>(N = 95) |
|-----------------------------------------------|-----------------------|
| Any AE                                        | 91 (96%)              |
| Serious AE related to study drug              | 17 (18%)              |
| Withdrawal due to AE                          | NR                    |
| Death as a result of AE                       | 0                     |
| Death as a result of AE related to study drug | 0                     |

| Parameter | N = 88<br>(response-evaluable) |
|-----------|--------------------------------|
| PR        | 22 (25%)                       |

#### Sacituzumab Govitecan (IMMU-132) Targeting Trophoblast Cell-Surface Antigen 2 (TROP2) in Advanced NSCLC (NCT01631552)

- Pretreated patients with metastatic NSCLC
- Median age 64 (40-68)
- Not preselected on the basis of TROP-2 expression on their tumors
- TROP-2 is not a predictive biomarker for response

|                                               | Sacituzumab Govitecan<br>(IMMU-132) (N = 54)                           |
|-----------------------------------------------|------------------------------------------------------------------------|
| Any AE                                        | YES                                                                    |
| Serious AE related to study drug              | YES<br>Neutropenia 28%<br>Leukopenia 9%<br>Pneumonia 9%<br>Diarrhea 7% |
| Withdrawal due to AE                          | 2 (3.7%)                                                               |
| Death as a result of AE                       | 0                                                                      |
| Death as a result of AE related to study drug | 0                                                                      |



#### Efficacy of IMMU-132 Targeting TROP2 in Advanced NSCLC



Time Since Start of Treatment (months)



## Faculty Discussion Takeaways for ADCs in NSCLC

## Cancer Care During COVID-19

## **Case Study: Meet Frank**

- 63-year-old man with mesothelioma
- Received cisplatin-pemetrexed pre-op chemotherapy 12/2019-2/2020 with excellent response
- Offered surgery 3/2020 but chose to delay due to COVID concern
- Returned to clinic 8/2020, with imaging showing profound growth in tumor, now unresectable
- Chemotherapy restarted with hope to render resectable again





December 2019

March 2020

August 2020

## **Impact of COVID-19 on Clinical Trials**

#### FDA Guidance (updated September 21, 2020)

- <u>Purpose</u>: Protect trial participants and manage study conduct
- <u>Recognized challenges</u>: Quarantines, site closures, travel limitations, interruptions to supply chain of investigational product, or possibility of staff/patients becoming infected with COVID-19
- Thus, difficulties meeting protocol-specified procedures (administering treatment; adhering to protocol-mandated visits, lab tests, imaging studies
- <u>Consider</u>: Telephone or video visits; local (i.e., near patient's home) lab and imaging studies; delaying some assessments; alternative sites for treatment administration; remote monitoring
- Remains in effect only during the COVID-19–related public health emergency



## Impact of COVID-19 on Clinical Trials

#### NIH Central IRB (CIRB) Guidance

- Clinical evaluations, blood tests, radiology studies, administration of non-investigational study treatments may be administered by non-study local healthcare providers
- Can obtain informed consent remotely
- Can use electronic signatures

#### NCI Cancer Therapy Evaluation Program (CTEP) Guidance

- "Virtual" or "telemedicine" visits may be used
- Protocol-required laboratory/imaging tests and treatment may be delayed
- Local healthcare providers may perform study follow-up
- May ship oral study therapy directly to patients' homes

National Cancer Institute (NCI) Central Institutional Review Board. NCI Website. 2020. https://www.ncicirb.org/announcements/frequentlyasked-questions-regarding-covid-19-and-cirb. Department of Health & Human Services.; Cancer Therapy Evaluation Program (CTEP) Website. 2020. https://ctep.cancer.gov/content/docs/Memorandum\_on\_Interim\_Guidance\_for\_Clinical\_Trial\_Activities\_Affected\_by\_the\_ Novel\_Coronavirus-3-13-2020.pdf.



## **ASCO Guidelines for Clinical Trials**

- Manage current patients based on sponsor policies and in accord with agency guidance
- Continue treatment on protocol, if possible, maintaining good clinical practice
- Consult sponsor and IRB (Institutional Review Board) with inquiries regarding deviations from protocol requirements during pandemic
- Protocol monitoring modifications may include all study monitoring being virtual visits if the trial sponsor agrees
- Ensure access to drugs prior to patient visit scheduling
- Resume screening and enrollment with consideration to COVID-19 exposure; testing may be appropriate
- Expand access to clinical trial enrollment as imaging, surgery, and ability to collect biospecimens expand safely for patients and staff
- Consider discussion with sponsor regarding eliminating nonessential tests needed for study enrollment and remote laboratory testing
- Contact Principal Investigator and/or trial sponsor to discuss anticipated protocol deviations during the pandemic

ASCO. American Society of Clinical Oncology. 2020. https://www.asco.org/sites/new-www.asco.org/files/content-files/2020-ASCO-Guide-Cancer-COVID19.pdf.



## **Clinical Trials in LC During COVID-19**

• Enrollment for clinical trials have dropped significantly

Changes in enrollment by patient and trial characteristics and by spread of COVID-19

| No. / Total No. (%)           |                       |                                 |                                  |                  |         |
|-------------------------------|-----------------------|---------------------------------|----------------------------------|------------------|---------|
| Characteristic                | All Enrolled Patients | Patients Enrolled<br>Weeks 1-11 | Patients Enrolled<br>Weeks 12-17 | OR (95%CI)       | P Value |
| Research setting              |                       |                                 |                                  |                  |         |
| Treatment                     | 1316/1870 (70.4)      | 948/1431 (66.2)                 | 368/439 (83.8)                   | 1 [Reference]    | NA      |
| Cancer control and prevention | 554/1870 (29.6)       | 483/1431 (33.8)                 | 71/439 (16.2)                    | 0.38 (0.29-0.50) | < .001  |

Clinical research professional's perception on clinical trial adjustment is dependent on experience





■ No experience with adjustment ■ Experience with adjustment

Unger JM, et al. JAMA Network Open. 2020;3(6):e2010651.; Gerber DE, Sheffield TY. JNCCN. 2020;1-8.

## Impact of COVID-19 on Oncology Practice

- Effect of COVID-19 on treatment decisions
  - Definitely (61%)
  - Probably/Possibly (36%)
  - Probably/Definitely not (4%)
- Factors affecting systemic therapy
  - Age of patient (81%) Comorbidities (92%)
- Use of G-CSF
  - Increased 78%
  - No change 22%
- Telemedicine usage
   Yes 80%







## TERAVOLT: Assessing Thoracic Cancer Patients with COVID-19

- Initial data from a cohort of 200
- 152 (76%) patients were hospitalized and 66 (33%) died
- Death was mainly due to COVID-19 complications
- Anti-cancer treatment did not affect fatality
- 151 (76%) patients with NSCLC

#### **Factors Associated with Death**

|                                                                 | Odds Ratio (95% CI) |  |
|-----------------------------------------------------------------|---------------------|--|
| COPD                                                            | 1.18 (0.59-2.37)    |  |
| Hypertension                                                    | 1.16 (0.61-2.21)    |  |
| Female sex (vs. male)                                           | 0.69 (0.33-1.44)    |  |
| Age > 65 (vs. ≤ 65) 1.53 (0.77-3.03)                            |                     |  |
| Current or former smoker<br>(vs. never smoker) 3.18 (1.11-9.06) |                     |  |
| Outcome includes death during hospitalization,                  |                     |  |

in the intensive care unit, or at home



## Treating NSCLC During COVID-19: Medical Oncology

| Stages I/II                                                                                     | Stage III                                                                             | Stage IV                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Neoadjuvant chemotherapy<br>(enabling deferral of surgery by<br>3 months) in clinical stage II  | Stage III NSCLC should receive<br>high priority                                       | Consider all available treatment options for newly diagnosed metastatic NSCLC                                                                                                     |
| Role of adjuvant chemotherapy at the present time should be reconsidered                        | Guaranteeing subsequent use of<br>durvalumab within 42 days after<br>CT/RT completion | ICI schedule modified/delayed to<br>reduce clinical visit, using 4-weekly<br>nivolumab 480 mg or 6-weekly<br>pembrolizumab 400 mg instead of the<br>standard 2-weekly or 3-weekly |
| Use of granulocyte growth factors in<br>adjuvant or neoadjuvant platinum-<br>based chemotherapy | Use of granulocyte growth factors<br>in high febrile neutropenia risk<br>(10%-15%)    | TKIs in oncogene-driven NSCLC must continue unaltered                                                                                                                             |

# Use of Telemedicine in Patients with Lung Cancer

- Worldwide backlog of surgeries due to COVID-19
- Significant upsurge in the use of telemedicine
- ESMO recommendations for use of telemedicine in patients with lung cancer
  - All non-priority patient appointments
  - Non-urgent situations for established patients without new complaints
  - Patients on long-term follow-up with low/intermediate risk of relapse
- ASCO also has detailed guidelines for use of telemedicine in cancer care



## **Discussion Points**

- How has COVID-19 impacted your practice?
- How do you convey prognosis?
- How do you explain disease progression when you cannot share scanned images?



### SMART Goals Specific, Measurable, Attainable, Relevant, Timely

- Apply predictive biomarkers to determine appropriate treatment
- Utilize liquid biopsy and NGS for molecular diagnosis
- Evaluate complexities, challenges, and potential of ADCs for NSCLC
- Modify treatment plans to deliver cancer care during the COVID-19 pandemic



## CME Outfitters



Questions & Answers Recorded on December 2, 2020

## How to Collect Credit for this Activity

To receive CME/CE credit, click on the link to complete the post-test and evaluation online. <u>www.cmeoutfitters.com/TST43732</u>

Be sure to fill in your **ABIM ID number** and **DOB** (MM/DD) on the evaluation so we can submit your credit to ABIM

Participants can print their certificate or statement of credit immediately.

## **CME for MIPS Improvement Activity**

Required Steps to Claim CME Credit as an MIPS Improvement Activity

- Complete activity post-test and evaluation at the link provided
- Over the next 90 days, actively work to incorporate improvements in your clinical practice from this presentation
- Complete the follow-up survey from CME Outfitters in approximately 3 months

CME Outfitters will send you confirmation of your participation to submit to CMS attesting to your completion of a CME for MIPS Improvement Activity







## Visit the Oncology Hub

Free education and resources for you and your patients.

www.cmeoutfitters.com/oncologyhub

## How to Collect Credit for this Activity

To receive CME/CE credit, click on the link to complete the post-test and evaluation online. <u>www.cmeoutfitters.com/TST43732</u>

Be sure to fill in your **ABIM ID number** and **DOB** (MM/DD) on the evaluation so we can submit your credit to ABIM

Participants can print their certificate or statement of credit immediately.