Weighing the Evidence: A Pharmacy Approach to Stroke Prevention in Obese Patients with Non-Valvular Atrial Fibrillation

Premiere Date: Sunday, December 6, 2020 6:30 PM - 8:00 PM ET (live)

Credit Expiration Date: Monday, December 6, 2021

Log-In: www.cmeoutfitters.com/PreventStroke #NVAFbeat

LIVE FACULTY:

Kazuhiko Kido, PharmD, MS, BCCP, BCPS Edith A. Nutescu, PharmD, MS CTS, FCCP

MODERATOR:

Deepak L. Bhatt, MD, MPH, FACC, FAHA, FSCAI, FESC

Take advantage of our LIVE Q&A segment during this webcast!

Please click on the **Ask Question** tab and type your question.

Email your question or comment: **questions@cmeoutfitters.com**

All other questions: Call CME Outfitters at 877.CME.PROS

This continuing education activity is provided by

INFORMATION FOR PARTICIPANTS

Statement of Need

Atrial fibrillation (AF) is estimated to affect over 5 million people in the United States and is associated with a five-fold increase in the relative risk of stroke. Obesity is an independent risk factor for cardiovascular disease (CVD) and is also associated with increased risk of developing non-valvular AF (NVAF). Patients with comorbid NVAF and obesity need appropriate management of their individual stroke risk. Guidelines for anticoagulant therapy in this patient population have been limited due to lack of available data.

Recent publications of subgroup analyses of randomized controlled trials (RCTs) and retrospective observational cohort studies have provided data on the efficacy and safety of direct oral anticoagulants (DOACs) versus warfarin in obese and extremely obese patients with NVAF. Because pharmacists are a trusted resource and have frequent access to patients, it is imperative that they are well-versed in the latest published data as well as existing guidelines and prescribing information for use of DOACs and warfarin to prevent stroke in patients with NVAF.

In this CME Outfitters virtual symposium, expert faculty will review key aspects of the prescribing information, guidelines, and recently published safety and efficacy data for DOACs and warfarin in order to enable pharmacists and other clinicians to support evidence-based therapeutic treatment decisions in obese patients with NVAF.

Learning Objectives

At the end of this CME/CE activity, participants should be able to:

- Assess existing guidelines and U.S. prescribing information for use of DOACs and warfarin to prevent stroke in obese patients with NVAF.
- Evaluate safety and efficacy data for DOACs and warfarin in obese patients with NVAF.
- Counsel obese patients with NVAF on risks and benefits of DOACs and warfarin to optimize adherence and health outcomes.

Target Audience

Health-system pharmacists and community pharmacists

Financial Support

Supported by an educational grant from the Bristol-Myers Squibb and Pfizer Alliance.

CREDIT INFORMATION

CME Credit (Physicians)

CME Outfitters, LLC, is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to provide continuing medical education for physicians. CME Outfitters, LLC, designates this live activity for a maximum of 1.5 AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Note to Physician Assistants: PAs may claim a maximum of 1.5 Category 1 credits for completing this activity. NCCPA accepts *AMA PRA Category 1 Credit*[™] from organizations accredited by ACCME or a recognized state medical society.

CNE Credit (Nurses)

Provider approved by the California Board of Registered Nursing, Provider Number CEP 15510, for 1.5 contact hours.

Note to Nurse Practitioners: Nurse practitioners can apply for *AMA PRA Category 1 Credit*™ through the American Academy of Nurse Practitioners (AANP). AANP will accept *AMA PRA Category 1 Credit*™ from organizations accredited by the Accreditation Council for Continuing Medical Education. Nurse practitioners can also apply for credit through their state boards.

CPE Credit (Pharmacists)

CME Outfitters, LLC, is accredited by the Accreditation Council for Pharmacy Education as a provider of continuing pharmacy education. 1.5 contact hours (0.15 CEUs)

Universal Activity Number: Live: 0376-0000-20-161-L01-P Type: knowledge-based

CREDIT REQUIREMENTS

Post-tests, credit request forms, and activity evaluations must be completed online (requires free account activation), and participants can print their certificate or statement of credit immediately (75% pass rate required). This website supports all browsers except Internet Explorer for Mac. For complete technical requirements and privacy policy, visit https://www.cmeoutfitters.com/privacy-and-confidentiality-policy.

There is no fee for participation in this activity. The estimated time for completion is 90 minutes. Questions? Please call 877.CME.PROS.

FACULTY BIOS & DISCLOSURES

Deepak L. Bhatt, MD, MPH, FACC, FAHA, FSCAI, FESC (Moderator)

After graduating as valedictorian from Boston Latin School, Dr. Bhatt obtained his undergraduate science degree as a National Merit Scholar at MIT while also serving as a research associate at Harvard Medical School. He received his medical doctorate from Cornell University and a Master of Public Health with a concentration in clinical effectiveness from Harvard University. His internship and residency in internal medicine were at the Hospital of the University of Pennsylvania, and his cardiovascular training was at Cleveland Clinic. Dr. Bhatt completed fellowships in interventional cardiology and cerebral and peripheral vascular intervention and served as Chief Interventional Fellow at Cleveland Clinic, where he spent several years as an interventional cardiologist and an Associate Professor of Medicine. Most recently he received the AHA's Distinguished Scientist Award in 2019 in addition to numerous other honors. Dr. Bhatt has been listed in Best Doctors in America from 2005 to 2020.

Dr. Bhatt's research interests include acute coronary syndromes, preventive cardiology, and advanced techniques in cardiac, cerebral, and peripheral intervention. He has authored or co-authored over 1500 publications and has been listed by the Web of Science Group as a Highly Cited Researcher from 2014 to 2019. He was the international PI for the CHARISMA and CRESCENDO trials and co-PI of the three CHAMPION trials. He served as chair of COGENT and co-PI of STAMPEDE. Additionally, Dr. Bhatt serves as chair for REDUCE-IT and SCORED. In 2018, REDUCE-IT was listed and named the top cardiology trial by NEJM. In 2014, he was listed in the AHA/ASA top ten advances in heart disease and stroke research (for STAMPEDE and SYMPLICITY HTN-3). He serves as Senior Associate Editor for News and Clinical Trials for ACC.org, Editor of the peer-reviewed *Journal of Invasive Cardiology*, as well as Editor of *Cardiovascular Intervention: A Companion to Braunwald's Heart Disease and Atherothrombosis in Clinical Practice* published by Oxford University Press. He also serves as Editor-in-Chief of the *Harvard Heart Letter* for patients.

Kazuhiko Kido, PharmD, MS, BCCP, BCPS

Dr. Kido is currently a clinical assistant professor of clinical pharmacy at West Virginia University (WVU) School of Pharmacy. Dr. Kido graduated from University of Iowa College of Pharmacy and completed his PGY 1 pharmacy practice residency and PGY 2 cardiology pharmacy residency at University of Kentucky HealthCare. He also received his Master of Science Degree from Keio University and his Bachelor of Science Degree from Kyoritsu College of Pharmacy in Japan.

Dr. Kido is a cardiology clinical pharmacy specialist in the WVU outpatient heart failure clinic and on the WVU inpatient heart failure service. His areas of research interests include anticoagulation in morbidly obese populations and the optimization of sacubitril/valsartan in real-world settings. Dr. Kido has published multiple original research articles and review articles in peer-reviewed journals. Dr. Kido is an active member in the American College of Clinical Pharmacy and American Society of Health-System Pharmacists. He currently serves as a committee member for multiple national pharmacy associations.

Edith A. Nutescu, PharmD, MS CTS, FCCP

Dr. Nutescu is the Michael Reese Endowed Professor of Cardiovascular Pharmacotherapy and Head of the Department of Pharmacy Practice at University of Illinois at Chicago (UIC) College of Pharmacy. She also serves as the Co-Director of the Personalized Medicine Program at the University of Illinois Hospital and Health Sciences System (UI - Health) and is Affiliate Faculty in the Center for Pharmacoepidemiology and Pharmacoeconomic Research and Center for Dissemination and Implementation Science. Dr. Nutescu received her Doctor of Pharmacy from the UIC College of Pharmacy and her Master in Clinical and Translational Science from the UIC School of Public Health. She completed Pharmacy Practice and Specialty Residency (Primary Care with Cardiology Emphasis) training at Advocate Health Care, Lutheran General Hospital and UIC.

Dr. Nutescu's research interests focus on comparative effectiveness and safety of cardiovascular pharmacotherapy and thromboembolic diseases. She has authored over 180 scientific articles and her research has been continuously funded by the National Institutes of Health, National Heart Lung and Blood Institute, The Department of Health and Human Services, the Agency for Healthcare Research and Quality, and the National Center for Research Resources, among others. She is a recipient of the Ruth L. Kirchstein National Research Service Award and National Heart Lung and Blood Institute Clinical Research Career Development Award. She has lectured extensively, both nationally and internationally, on topics related to personalized medicine, thrombosis, cardiovascular diseases and stroke. Her book, "Anticoagulation Therapy: A Clinical Practice Guide," is used nationally and internationally to guide clinical practice guidelines and the bedside management of patients on anticoagulation therapy.

Dr. Nutescu serves as Scientific Editor for the journal *Pharmacotherapy* and has served on the editorial board for the *American Journal of Health-System Pharmacy*, and *Annals of Pharmacotherapy*. She is active in several professional organizations including the American College of Clinical Pharmacy, the American Heart Association, the International Society for Thrombosis and Haemostasis, Academy Health, the Anticoagulation Forum, and the National Blood Clot Alliance. She has served on the Board of Regents for the American College of Clinical Pharmacy, on the National Consumers League Senior Outpatient Medication Safety Coalition, and was the only pharmacist member to serve on the steering committee of the National Quality Forum and The Joint Commission that developed "National Consensus Standards for the Prevention and Care of Venous Thrombosis." Dr. Nutescu has been recognized as a Fellow of the American College of Clinical Pharmacy. She has received the American Society of Health System Pharmacists Foundation Award for Excellence in Medication-Use Safety, the American College of Clinical Pharmacy, and the Therapeutics Frontiers Award for her outstanding contributions to pharmacotherapeutics in her field.

Disclosure of Relevant Financial Relationships with Commercial Interests

It is the policy of CME Outfitters, LLC, to ensure independence, balance, objectivity, and scientific rigor and integrity in all of their CME/CE activities. Faculty must disclose to the participants any relationships with commercial companies whose products or devices may be mentioned in faculty presentations, or with the commercial supporter of this CE activity. CME Outfitters, LLC, has evaluated, identified, and attempted to resolve any potential conflicts of interest through a rigorous content validation procedure, use of evidence-based data/research, and a multidisciplinary peer review process. The following information is for participant information only. It is not assumed that these relationships will have a negative impact on the presentations.

Dr. Bhatt reports that he is a consultant for Abbott; Afimmune; Amarin Corporation; Amgen Inc.; Astra Zeneca; Bayer Corporation; Boehringer Ingelheim; Bristol-Myers Squibb Company; Cardax, Inc.; Chiesi USA, Inc.; CSL Behring; Eisai Inc.; Ethicon USA, LLC; Ferring Pharmaceuticals; Forest Laboratories; Fractyl Laboratories, Inc.; Idorsia Pharmaceuticals Ltd.; Ironwood Pharmaceuticals, Inc.; Ischemix; Lexicon Pharmaceuticals, Inc.; Lilly USA, LLC.; Medtronic; PhaseBio Pharmaceuticals, Inc.; Plx Pharma Inc.; Regeneron; Roche; Sanofi-Aventis U.S. LLC; Synaptic Pharmaceutical Corp.; and The Medicines Company.

Dr. Kido has no disclosures to report.

Dr. Nutesco has no disclosures to report.

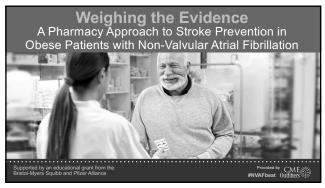
Mae Ochoa, RPh (peer reviewer) has no disclosures to report.

Rachel Speer, PhD (planning committee) has no disclosures to report.

Evan Luberger (planning committee) has no disclosures to report.

Jan Perez (planning committee) has no disclosures to report.

Sharon Tordoff (planning committee) has no disclosures to report.


Disclosures were obtained from the CME Outfitters, LLC staff: No disclosures to report.

Unlabeled Use Disclosure

Faculty of this CME/CE activity may include discussions of products or devices that are not currently labeled for use by the FDA. The faculty have been informed of their responsibility to disclose to the audience if they will be discussing off-label or investigational uses (any uses not approved by the FDA) of products or devices.

Activity Slides

The slides that are presented in this activity will be available to download and print out at the activity details page on the CME Outfitters website: **www.cmeoutfitters.com/NVAFbeat**. Activity slides may also be obtained via fax or email by calling **877.CME.PROS**.

CME Outfitters, LLC, is the accredited provider for this continuing education activity.

CME

2

Engage with us via Twitter!	1
Follow us on Twitter! @CMEOutfitters for upcoming CE opportunities, health care news, and more #NVAFbeat	?ME&B

Deepak L. Bhatt, MD, MPH, FACC, FAHA, FSCAI, FESC

Executive Director of Interventional Cardiovascular Programs Brigham and Women's Hospital Heart & Vascular Center Professor of Medicine Harvard Medical School Boston, MA

CME

4

Edith A. Nutescu, PharmD, MS CTS, FCCP

Michael Reese Endowed Professor of Cardiovascular Pharmacotherapy and Head

Department of Pharmacy Practice The University of Illinois at Chicago, College of Pharmacy Chicago, IL

CME

5

Kazuhiko Kido, PharmD, MS, BCCP, BCPS

Clinical Assistant Professor of Clinical Pharmacy West Virginia University School of Pharmacy Morgantown, WV

CME

Learning Objective

Assess existing guidelines and U.S. prescribing information for use of NOACs and warfarin to prevent stroke in obese patients with NVAF.

CME

7

Learning Objective

Evaluate safety and efficacy data for NOACs and warfarin in obese patients with NVAF.

8

Learning 3 Objective

Counsel obese patients with NVAF on risks and benefits of NOACs and warfarin to optimize adherence and health outcomes.

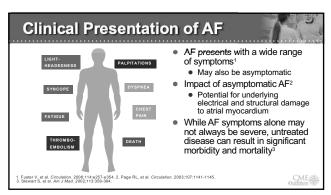
CME

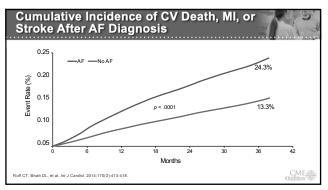
Case Study

- 63-year-old female presented to the hospital for new onset atrial fibrillation
- PMH: hypertension, diabetes
- **Weight** 130 kg, body mass index (**BMI**) 45 kg/m² **Vitals**: BP 130/85, P 90, RR 22, T 36.5 °C
- **Medications**: aspirin 81 mg once daily, lisinopril 10 mg once daily, metformin 500 mg twice daily
- Allergy: NKA
- Labs: all within normal range

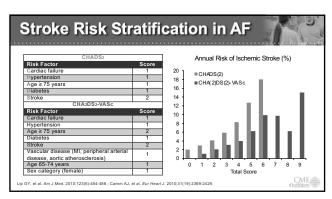
10

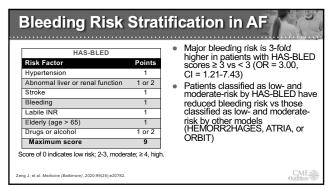
Obesity and AF



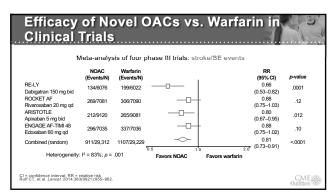

- 35%-40% of adults in the US are living with obesity
- · Obesity is an independent risk factor for AF, and frequently coexists with other AF risk factors including hypertension, T2DM, and chronic kidney disease.
- Obesity accounts for 1 in 5 of all AF cases
- AF risk increased by 3%-7% per incremental BMI unit
- Obesity results in atrial remodeling, increased atrial size, interstitial fibrosis, pericardial fat, fat infiltration into atrial myocardium, and heterogeneous and slowed conduction.

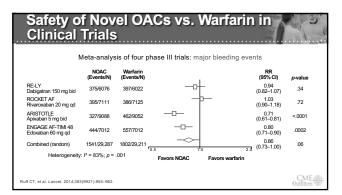
AF = atrial fibrillation; BMI = body mass index; T2DM = type 2 diabetes mellitus. Calkins H, et al. Heart Rhythm. 2017;14(10):e275-e444.


12


Epidemiology of AF in the US: Rising Prevalence As of 2010, prevalence estimates for AF in the US ranged from ~2.7 million to 6.1 million¹ AF prevalence is predicted to increase by up to two-fold by 2030 to 12.1 million^{1,2} CME St Outfitters jamin EJ, et al. Circulation. 2018;137:e67-e492. 2. Colilla S, et al. Am J Cardiol. 2013;112:1142:1147.

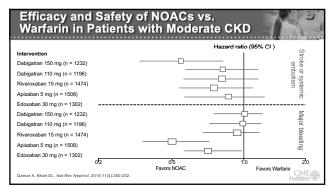
	· · · · · · · · · · · · · · · · · · ·			
Year	Study	n	AF Burden Measure	HR for stroke
2003	MOST	312	5 min	6.7 $p = 0.02$
2005	Capucci	725	> 24 hrs	3.1 p = 0.04
2009	Botto	568	CHADS + AF burden	6.2 (5 vs. 0.8%)
2012	Home monitor CRT	560	3.8 hrs	9.4 $p = 0.006$
2012	TRENDS	2486	5.5 hrs	2.4 p = 0.06
2012	ASSERT	2580	6 min	2.5 p = 0.008

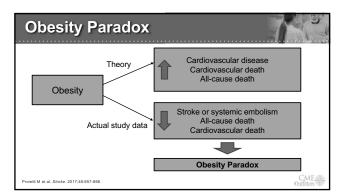

Summary of Class I Recommendations	COR	LOE
For patients with AF and the CHA2DS≥-VASc score of ≥ 2 in men or ≥ 3 in women, oral nticoaquiants are recommended. Options include warfarin (LOE: A), dabigatran (LOE: B), ivaroxaban (LOE: B), apixaban (LOE: B), or edoxaban (LOE: B-R).	1	A.B.
NOACs (dabigatran, rivaroxaban, apixaban, and edoxaban) are recommended over warfarin in AOAC-eligible patients with AF (except with moderate-to-severe mitral stenosis or a mechanica leart valve).	1 1	Α
Among patients treated with warfarin, the international normalized ratio (INR) should be letermined at least weekly during initiation of anticoagulant therapy and at least monthly when inticoagulation (INR in range) is stable	1	А
n patients with AF (except with moderate-to-severe mitral stenosis or a mechanical heart raive), the CHA2DS2-VASc score is recommended for assessment of stroke risk.	- 1	В
For patients with AF who have mechanical heart valves, warfarin is recommended.	1	В
Selection of anticoagulant therapy should be based on the risk of thromboembolism, rrespective of whether the AF pattern is paroxysmal, persistent, or permanent.	- 1	В
Renal function and hepatic function should be evaluated before initiation of a NOAC and should be reevaluated at least annually.	1	B-NR

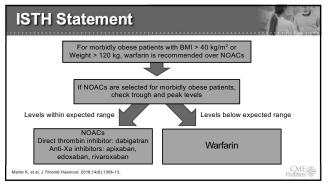

	Dabigatran ¹	Rivaroxaban ²	Apixaban³	Edoxaban ⁴
MOA	DTI	Factor Xa Inhibitor	Factor Xa Inhibitor	Factor Xa Inhibitor
Administration	BID	QD	BID	QD
Peak Effect (hr)	2-3	2-4	1-3	1-2
Half-life	14-17 hours	5-9 hours	8-15 hours	10-15 hours
Renal Clearance	80%	33%	27%	50%
Drug-drug interactions	P-gp	P-gp and CYP3A4	P-gp and CYP3A4	P-gp
Food	No effect	Take with evening meal	No effect	No effect
Reversal Agent	Idarucizumab	Andexanet-alpha	Andexanet-alpha	N/A

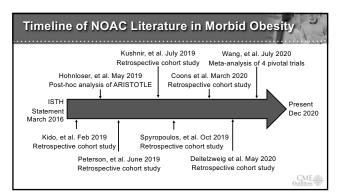
eCrCl, mL/min*	Dabigatran ¹	Rivaroxaban ²	Apixaban ³	Edoxaban⁴
> 95		20 mg QD with	No adjustment based	Not recommended
51-95	150 mg BID	evening meal	on CrCl.	60 mg QD
31-50		15 mg QD with	2.5 mg BID for patients with ≥ 2 of the following:	00 00
15-30	75 mg BID	evening meal • age ≥ 80 years	30 mg QD	
<15, not on dialysis	Not recommended	Not recommended	 body weight ≤ 60 kg serum creatinine ≥ 1.5 mg/dL 	Not recommended
On dialysis	Not recommended	Not recommended	5 mg BID otherwise	Not recommended

Child-Pugh Class	Dabigatran ¹	Rivaroxaban ²	Apixaban ³	Edoxaban4
Class A	No dose adjustment required	No dose adjustment required	No dose adjustment required	No dose adjustment required
Class B	Large inter-subject variability, but no evidence of a consistent change in exposure of pharmacodynamics	Not recommended	Use with caution; dosing recommendations not provided	Not recommended
Class C	No dose adjustment required	Not recommended	Not recommended	Not recommended


Concomitant medication	Dabigatran ¹	Rivaroxaban ²	Apixaban ³	Edoxaban ⁴
P-gp inducers (eg, rifampin)	Avoid	Avoid	Avoid	Avoid
Combined P-gp and strong CYP3A4 inducers (e.g., carbamazepine, phenytoin, St. John's wort)		Avoid	Avoid	
P-gp inhibitors (dronedarone, systemic ketoconazole)	CrCl 30-50 mL/min: Reduce dose CrCl <30 mL/min: Not recommended			No dose reduction for treatment of NVAF
Combined P-gp and strong CYP3A4 inhibitors (e.g., ketoconazole, itraconazole, ritonavir)		Avoid	Reduce dose by 50% for pts receiving 5 or 10 mg BID. In patients already taking 2.5 mg BID, avoid apixaban	
Combined P-gp and moderate CYP3A inhibitors (e.g., erythromycin)		Do not use in patients with CrCl 15 to <80 ml/min unless potential benefit justifies potential risk		
Increased risk of bleeding with co	administration of antico	pagulants (eg, heparin, enoxap	parin, warfarin), antiplatelet agents	(eg, aspirin,




Under-Dosing of NOACs in NVAF: **Prevalence and Clinical Consequences** In a sample of 13,392 patients in the US with no renal indication for dose reduction, 13.3% received reduced doses of NOACs.1 Under-dosing was most common in patients with age ≥ 80 years, with CHA2DS2-VASc ≥ 4, or HAS-BLED ≥ 3. Among 8,425 patients in Israel newly diagnosed with NVAF and initiating NOAC therapy, 39% received off-label dose-reduced treatment.² • Underdosing was associated with poorer outcomes Reduced dose Events/N (%) Std. dose Events/N (%) OR (95% CI) Effectiveness: composite outcome of all-cause death, stroke, or MI 749/3285 (22.8) 447/5140 (8.7) 1.57 (1.34 - 1.83) < .001 Safety: bleeding events requiring hospitalization 101/3274 (3.1) 80/5144 (1.6) 1.63 (1.14 - 2.34) .008 I. Yao X, et al. J Am Coll Cardiol. 2017;69(23):2779-2790. 2. Arbel R, et al. Am J Med. 2019;132(7):847-855.


26

		trial outcor	
Stroke/SE*	Obese Events	Normal Weight Events	Odds Ratio M-H, Fixed, 95% CI
ARISTOTLE	152/7159	142/4052	0.60 [0.47, 0.75]
RE-LY	145/6279	182/4697	0.59 [0.47, 0.73]
ROCKET AF	179/5194	167/3314	0.67 [0.54, 0.83]
Total (95% CI)	476/18632	491/12063	0.62 [0.54, 0.70]
Major Bleeding **	Obese Events	Normal Weight Events	Odds Ratio M-H, Fixed, 95% CI
ARISTOTLE	258/7134	219/4035	0.73 [0.61, 0.87]
RE-LY	394/6279	344/4697	0.85 [0.73, 0.98]
ROCKET AF	279/5214	183/3327	0.97 [0.80, 1.18]
Total (95% CI)	958/18627	746/12059	0.84 [0.72, 0.98]

NOAC	Intensity (qualitative assessment)	Levels (quantitative assessment)
Dabigatran	aPTT, TT	Estimation: Diluted TT, ECT, ECA LC-MS/MS: level below 50 ng/mL
Apixaban	PT? (not recommended)	Chromogenic anti-Xa assays
Rivaroxaban	PT	LC-MS/MS: quantification of lower levels (e.g., rivaroxaban level < 30
Edoxaban	PT	ng/mL, apixaban level < 50 ng/mL)

NOAC Lev	els: Expe	cted Stead	y-State Le	vels
NOAC	Dabigatran	Rivaroxaban	Apixaban	Edoxaban
Dose	150 mg BID	20 mg QD	5 mg BID	60 mg QD
Peak (ng/mL)	64-443	189-419	91-321	120-250
Trough (ng/mL)	31-225	6-87	41-230	10-40
Samuelson BT, et al. CHEST. 2	017;151(1):127-138.			CME Outlitters

35

Conclusions

- Reducing stroke risk in patients with AF is essential, regardless of whether a patient is symptomatic
- NOACs are generally recommended as first-line therapy for stroke prevention in NVAF
- Obesity paradox theory may support the use of NOACs in morbidly obese patients, but more data are needed
- Measuring NOAC levels is suggested in patients with BMI > 40 kg/m² or weight > 120 kg
 - Diluted thrombin time: dabigatran level
 - Chromogenic anti-Xa levels: apixaban, edoxaban, rivaroxaban

January CT, et al. J Am Coll Cardiol. 2019;74(1):104-132.; Martin K, et al. J Thromb Haemost. 2016;14(6):1308-13.; Proietti M, et al. Stroke. 2017;48:857-868.

CME S Outfitters

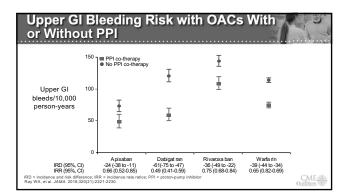
36

Learning Objective 2 Evaluate safety and efficacy data for NOACs and warfarin in obese patients with NVAF.

	l Evidence in Morbidly III Trials	Obese Fatients			
	ARISTOTLE post-hoc analysis 5 BMI categories	ARISTOTLE post-hoc analysis 3 weight categories			
Patients	18.5 to < 25 kg/m² (n = 4052) 25 to < 30 kg/m² (n = 6702) 30 to < 35 kg/m² (n = 4379) 35 to < 40 kg/m² (n = 1774) ≥ 40 kg/m² (n = 1006)	< 60 kg (n = 1985) 60-120 kg (n = 15,172) > 120 kg (n = 982)			
Intervention	Apixaban vs Warfarin				
Outcomes	Primary efficacy: stroke or systemic embolism Primary safety: ISTH major bleeding				
Results	No significant interaction between intervention and BMI in the primary efficacy outcome No significant difference in major bleeding rate between BMI ≥ 40 and other BMIs	Nonsignificant interaction between the three weight cohorts for the composite event of stroke or SE			
ohnloser S. et al. Gir	rate between BMI ≥ 40 and other BMIs culation. 2019:139(20):2292-2300.: Sandhu R. et al. Eur Heart J. 201	6,37(38):2869-2878. Outlittee			

Phase	III Trials: E	fficacy by I	BMI Category
BMI (kg/m²)	Trial	HR (95% CI) of SSE for NOAC vs warfarin	P value for interaction
	RE-LY	.71 (0.47, 1.08)	of BMI category and
30 – 34.99	ROCKET-AF	1.02 (0.76, 1.36)	efficacy outcome:
30 - 34.99	ARISTOTLE	0.91 (0.62, 1.34)	• RE-LY < .001
	ENGAGE AF-TIMI 48	0.70 (0.50, 0.97)	ROCKET-AF = .40
35 – 39.99	ARISTOTLE	0.31 (0.13, 0.74)	ARISTOTLE = .11 FNGAGE AF-TIMI 48 = .16
33 – 39.99	ENGAGE AF-TIMI 48	1.43 (0.76, 2.70)	ENGAGE AF-TIMI 4610
≥ 40	ARISTOTLE	0.88 (0.35, 2.18)	
240	ENGAGE AF-TIMI 48	1.37 (0.37, 5.05)	
18.5 to ≥ 40	meta-analysis of RE-LY, ROCKET-AF, ARISTOTLE, and ENGAGE AF-TIMI 48	0.82 (0.75, 0.89)	
Wang SY, Giugliano RP	. Am J Cardiol. 2020;127:176-183.		CME Outfitters

Phase	III Trials: S	afety by Bl	MI Category
BMI (kg/m²)	Trial	HR (95% CI) of Major Bleeding for NOAC vs warfarin	P value for interaction
	RE-LY	1.14 (0.89, 1.45)	of BMI category and safety outcome:
30 - 34.99	ROCKET-AF	1.15 (0.91, 1.45)	RE-LY = .95
30 - 34.99	ARISTOTLE	0.82 (0.62, 1.09)	• ROCKET-AF = .54
	ENGAGE AF-TIMI 48	0.88 (0.69, 1.13)	ARISTOTLE = .039
35 – 39.99	ARISTOTLE	0.92 (0.57, 1.48)	 ENGAGE AF-TIMI 48 = .81
35 - 39.99	ENGAGE AF-TIMI 48	0.69 (0.45, 1.07)	
≥40	ARISTOTLE	0.74 (0.35, 1.57)	
240	ENGAGE AF-TIMI 48	0.92 (0.54, 1.57)	
18.5 to ≥ 40	meta-analysis of RE-LY, ROCKET-AF, ARISTOTLE, and ENGAGE AF-TIMI 48	0.86 (0.80, 0.92)	
/ang SY, Giugliano RF	. Am J Cardiol. 2020;127:176-183.		CME


	Kido et al. Single center retrospective cohort study	Peterson et al. Retrospective cohort study using national insurance claim data	Kushnir et al. Single center, retrospective cohort study
Patients	Patients with atrial fibrillation (AF) and BMI > 40 or weight > 120 kg	Morbidly obese patients with AF based on diagnostic codes	Morbidly obese patients with BMI > 40 with AF or VTE
Intervention	NOAC (apixaban [n = 19], dabigatran [n = 20], or rivaroxaban [n = 25])	Rivaroxaban (n = 3563)	Apixaban (n = 103) or rivaroxaban (n = 174)
Comparison	Warfarin (n = 64)	Warfarin (n = 3563)	Warfarin (n = 152)
Outcomes	Primary efficacy : stroke or TIA Primary safety: major bleeding	Primary: ischemic stroke or SE Secondary: major bleeding	Efficacy: stroke Safety outcome: major bleeding
Results	NOAC vs warfarin: Stroke or TIA: 1.75%/yr vs 2.07%/yr • RR 0.84, 95% CI 0.23–3.14 ISTH major bleeding • 2.18%/yr vs 4.97%/yr • RR 0.44, 95% CI 0.15–1.25	Rivaroxaban vs warfarin: Ischemic stroke or SE: - 1.5% vs 1.7% - HR 0.88, 95% CI 0.60–1.28 Major bleeding: - 2.2% vs 2.7% - HR 0.80, 95% CI 0.59–1.08	Stroke in AF cohort: apixaban 10% invaroxaban 2.3% warfarin 1.3% (p = .71 between all cohorts) ISTH major bleeding in AF cohort: apixaban 2.9% rivaroxaban 2.9% warfarin 7.9% (p = .03 between all cohorts)

			Stroke or SE	event rate	
Study or Subgroup	NOAC Events	Warfarin Events	Weight	Odds Ratio M-H, Fixed, 95% CI	Odds Ratio M-H, Fixed, 95% CI
Hohnloser 2019	4/480	11/502	8.7%		0.38 [0.12, 1.19]
Kido 2019	4/64	3/64	4.9%		1.36 [0.29, 6.32]
Kushnir 2019	5/277	2/153	4.2%		1.38 [0.26, 7.19]
Perales 2019	0/37	0/30			Not estimable
Peterson 2019	52/3563	59/3563	82.1%	⇔	0.88 [0.60, 1.28]
Total (95% CI)	4421	4311	100.0%		.85 [0.60, 1.19]
Total events	476	491	0.01	0.1 1 10 Favors NOAC Favors Warfarin	100

		M	ajor bleeding	g event rate	
Study or Subgroup	NOAC Events	Warfarin Events	Weight	Odds Ratio M-H, Fixed, 95% CI	Odds Ratio M-H, Fixed, 95% CI
Hohnloser 2019	13/480	19/502	21.5%	-0-	0.71 [0.35, 1.45]
Kido 2019	5/64	12/64	10.7%		0.37 [0.12, 1.11]
Kushnir 2019	8/277	12/152	14.7%		0.35 [0.14, 0.87]
Peterson 2019	77/3563	96/3563	53.0%	0	0.80 [0.59, 1.08]
Total (95% CI)	4384	4281	100.0%	♦	0.63 [0.43, 0.94]
Total events	103	139	0.01	0.1 1 10 Favors NOAC Favors War	100 farin

Efficacy			Reference Rate (per 100 n-years)		Hazard Ratio (95% CI)	P-valu
Apixaban vs. W	Varfarin (ref.)	n = 18,181 n = 18,181				
Stroke/SE		1.3	1.8	-0-	0.63 (0.49-0.82)	0.00
	Ischemic	1.0	1.2	-0-	0.78 (0.63-0.96)	0.01
	Hemorrhagic	0.2	0.6		0.37 (0.18-0.77)	0.00
Dabigatran vs. Warfarin (ref.)		n = 6646	n = 6646			
Stroke/SE		1.6	1.3	_	1.23 (0.90-1.67)	0.19
	Ischemic	1.3	0.9		1.53 (1.03-2.26)	0.03
	Hemorrhagic	0.2	0.4		0.47 (0.21-1.06)	0.07
Rivaroxaban v	s. Warfarin (ref.)	n = 22,053	n = 22,053			
Stroke/SE		1.4	1.6	-0-	0.84 (0.72-0.98)	0.02
	Ischemic	1.1	1.1	-0	0.93 (0.78-1.11)	0.41
	Hemorrhagic	0.2	0.5		0.53 (0.37-0.78)	0.00

Safety			Reference tate (per 100 n-years)		Hazard Ratio (95% CI)	P-valu
Apixaban vs. War	farin (ref.)	n = 18,181	n = 18,181			
Major Bleeding		4.1	6.8	-0-	0.54 (0.49-0.61)	<0.00
	Gl Bleeding	2.0	3.2	-0-	0.54 (0.49-0.61)	<0.00
	ICH	0.4	1.0	-0	0.38 (0.25-0.56)	<0.00
Dabigatran vs. Warfarin (ref.)		n = 6646	n = 6646			
Major Bleeding		4.2	5.5	-0-	0.75 (0.63-0.91)	0.003
	Gl Bleeding	2.6	2.7	—	0.97 (0.76-1.25)	0.810
	ICH	0.4	0.5		0.75 (0.40-1.41)	0.368
Rivaroxaban vs. V	Varfarin (ref.)	n = 22,053	n = 22,053			
Major Bleeding		6.7	6.5	_	1.02 (0.90-1.17)	0.750
	GI Bleeding	3.9	3.1		1.25 (1.11-1.41)	<0.00
	ICH	0.4	0.8	-0-	0.49 (0.34-0.70)	< 0.00

Conclusions

 Analysis of Phase III clinical trial data and retrospective cohort studies support the use of NOACs in morbidly obese patients with atrial fibrillation

CME S

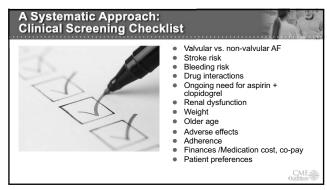
47

Learning Objective

Counsel obese patients with NVAF on risks and benefits of NOACs and warfarin to optimize adherence and health outcomes.

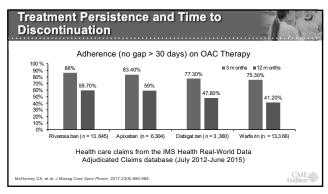
48

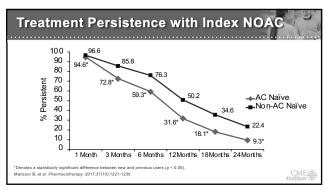
Case Study

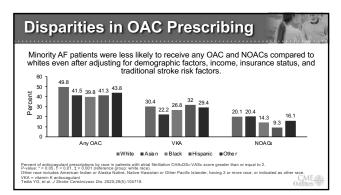

- 74-year-old male with PMH of atrial fibrillation comes to the cardiology multidisciplinary clinic for a regular follow-up
- As an ambulatory care pharmacist, you are reviewing his medication regimen prior to the physician's appointment
- Morbidly obese (BMI 50 kg/m², weight 150 kg)
- Dabigatran 150 mg twice daily
- Serum creatinine 1.5 mg/dl and eCrCl is about 30 ml/min
- He started taking St. John's Wort for depression, which was recommended by his primary care physician 2 months ago
- He does not know why he needs to stay on dabigatran and forgets to take it at least 1-2 times weekly

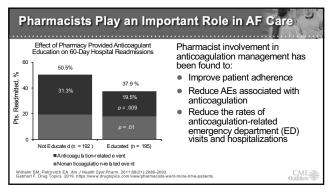
Case Study

- 65-year-old African American woman
- HTN (uncontrolled 165/95), DM, CRI (CrCL 35mL/min) and HLD
- Presents to emergency room with dizziness and palpitations
- EKG: Atrial fibrillation, rate of 110bpm
- Exam: normal; Labs within normal limits; Cr 1.5, Wt = 124Kg, BMI 47.0
- Medications: lisinopril 40mg daily, atorvastatin 20 mg daily, aspirin 81 mg daily, diltiazem XR 120 mg daily, glipizide 20 mg daily
- SH: ETOH (+), 2-3 drinks/day


- She is a widower who lives alone 30 miles from the nearest clinic. She has limited dexterity as well as trouble with transportation because she does not drive. She has Medicare part D insurance coverage but is concerned about a high co-pay on her medications, which she can't afford. She is forgetful and expresses a preference for medication that she can take once daily as all her current medications can be taken once daily.


51




53

NOAC Switching Patterns: Time NOAC Vitamin K Antagonist Injectable Time to First Switch (Days), median (IQR)* 309.5 (119.0-552.0) 118.0 (41.0-287.0) Switching Pattern Over Time by Type of Anticoagulant Switching Pattern Over Time Overall 6 Months 12 Months 18 Months 24 Months Manzoor BS, et al. J Thromb Thrombolysis. 2017;44(4):435-441.

Specific Pharmacist Interventions Associated with Greater NOAC Patient Adherence Specific pharmacist-based interventions were associated with better dabigatran adherence! Longer duration of monitoring (> 12 months) and providing more intensive care to nonadherent patients improved adherence Shore S, et al. JAMA. 2015;313(14):1443-1450.

Category	Factors	
Patient-centered Factors	Demographics: age, sex, ethnicity, education, marital status, income Psychosociat: beliefs, motivation, attitudes Social: tobacco and alcohol use Health literacy and numeracy Patient knowledge Cognitive decline Physical limitations	
Therapy-related Factors	Medication: side effects, route of administration, taste and storage Disease: symptoms and severity Complexity of treatment Duration of treatment Behavior change required	
Healthcare System Factors	Barriers to accessibility Long wait time Difficulty in filling prescriptions Unhappy office/clinic encounters	
Social and Economic Factors	Costs vs. Income Inability to take time off Social support	

Pharmacist Role In Collaborative Therapeutic Decision-Making

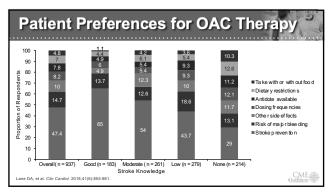
- Estimate patients' stroke/systemic embolism and major bleeding risks
 CHA2DS2-VASc score
 HAS-BLED score
- Identify appropriate candidates for anticoagulation therapy in patients with AF
- Recommend the appropriate anticoagulant to multidisciplinary team based on:
 - Efficacy and safety results from pivotal trials
 - Comorbidities (e.g., obesity)
 Organ function (kidney, liver)
 Cost, insurance coverage

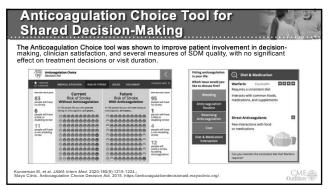
 - Drug-drug interactions
 Patient preference
- Communicate the team's recommendation with patients
- Educate patients on the selected anticoagulant to enhance adherence and optimize therapy outcomes

61

Patient-Centered Education

- According to the Joint Commission, patient education on anticoagulation therapy should include:
 - Necessity of follow-up monitoring
 - Importance of adherence
 - Drug-food and drug-drug interactions
 - Potential for side effects
- Counseling should be tailored to each patient based on their medication and literacy level


62


The Need for Shared Decision-Making (SDM) in AF Management

- Less than half of high-risk patients with AF receive anticoagulants¹
- Of those who start anticoagulation, 30% 50% stop treatment within 12 months^{2,3}
- 2019 AHA/ACC/HRS guidelines note that SDM can improve adherence to anticoagulant therapy⁴

2019 AHA/ACC/HRS Recommendation ⁴	Class	Level
In patients with AF, anticoagulant therapy should be individualized on the basis of shared decision-making after discussion of the absolute risk and relative risks of stroke and bleeding, as well as the patient's values and preferences.	1	С

. Ogilvie IM, et al. Am J Med. 2010;123(7):638-645.e4.; 2. Hylek EM, et al. Circulation. 2007;115(21):2689-2696; . Gallagher AM, et al. J Thromb Haemost. 2008;6(9):1500-1506.; 4. January CT, et al. J Am Coli Cardiol. 2019;74(1):104-132.

65

Back to Our Patient

- Several patient-specific factors need to be considered when selecting oral anticoagulation for patients

 • Thrombosis and bleeding risks, weight, renal function,
 - age, and concomitant drug therapy

 Patient preferences and cost considerations are critical
- Use of clinical decision support tools can aid in treatment selection and patient education
- A systematic approach to screening and discussing drug selection is vital for selection of best agent

NVAF Whiteboard for Patient Education

- ~ 2-minute free animation educating patients on:
- Description of NVAF
- Risk factors for NVAF
- Symptoms of NVAF
- Treatment options
- Downloadable "Questions to Ask Your HCP"

Available at https://www.cmeoutfitters.com/cardiology

67

SMART Goals

Specific, Measurable, Attainable, Relevant, Timely

- Select appropriate anticoagulation at the appropriate dose
 - Utilize a systematic approach to screening
 - Individualize treatment selection
 - Don't underestimate the risk of undertreatment
- Consider measuring NOAC levels in morbidly obese patients where appropriate

 - Diluted thrombin time: dabigatran level
 Chromogenic anti-Xa levels: apixaban, edoxaban, rivaroxaban
- Apply clinical study findings of NOACs and warfarin in obese patients with AF to appropriate patients in your practice
- Engage patients in SDM and reinforce the importance of adherence and persistence

68

To Ask a Question

Please click on the Ask Question tab and type your question.

Please include the faculty member's name if the question is specifically for him/her.

To Receive Credit

To receive CME/CE credit click on the Evaluations tab to complete the post-test and evaluation online.

Participants can print their certificate or statement of credit immediately.

CME

Attendance Form for Groups

Please complete and FAX to 614.929.3600

Activity Title and Faculty:

Weighing the Evidence: A Pharmacy Approach to Stroke Prevention in Obese Patients with Non-Valvular Atrial Fibrillation

with Deepak L. Bhatt, MD, MPH, FACC, FAHA, FSCAI, FESC (Moderator), Kazuhiko Kido, PharmD, MS, BCCP, BCPS, and Edith A. Nutescu, PharmD, MS CTS, FCCP

Site/Institution Name:									
☐ Office-based ☐ Office-based ☐ Practice Setting: ☐ Large Group Practice	Hospital (more than 5)	☐ Clir☐ Oth		☐ Mar	naged Car	e 	☐ Small Group	Practice (less than 5)	
Address:									
City:						Sta	te:	ZIP:	
Site Coordinator:				Pho	ne:				
Fax:		En	nail:						
Completion Date:	We partici	pated	d in:						
Attendee Name (please prin	nt)				Please	e Circl	le Disciplii	ne	
		MD	DO	PA	NP	RN	Pharm	Other:	
		MD	DO	PA	NP	RN	Pharm	Other:	
		MD	DO	PA	NP	RN	Pharm	Other:	
		MD	DO	PA	NP	RN	Pharm	Other:	
		MD	DO	PA	NP	RN	Pharm	Other:	
		MD	DO	PA	NP	RN	Pharm	Other:	
		MD	DO	PA	NP	RN	Pharm	Other:	
		MD	DO	PA	NP	RN	Pharm	Other:	
		MD	DO	PA	NP	RN	Pharm	Other:	
		MD	DO	PA	NP	RN	Pharm	Other:	
		MD	DO	PA	NP	RN	Pharm	Other:	
		MD	DO	PA	NP	RN	Pharm	Other:	
		MD	DO	PA	NP	RN	Pharm	Other:	
		MD	DO	PA	NP	RN	Pharm	Other:	
		MD	DO	PA	NP	RN	Pharm	Other:	