Clinical Practice Guidelines for Pain Management in Acute Musculoskeletal Injury

Joseph R. Hsu, MD; Hassan Mir, MD; Meghan K. Wally, MSPH; Rachel B. Seymour, PhD; and the Orthopaedic Trauma Association Musculoskeletal Pain Task Force*

1Department of Orthopaedic Surgery, Atrium Health Musculoskeletal Institute, Charlotte, NC
2Florida Orthopaedic Institute, University of South Florida, Tampa, FL

Corresponding author:
Joseph R. Hsu, MD
1025 Morehead Medical Drive Suite 300
Charlotte, NC 28204
Joseph.Hsu@atriumhealth.org
704-355-4257
704-355-8708

*Orthopaedic Trauma Association Musculoskeletal Pain Task Force:
Kristin R. Archer, PhD, DPT; Department of Physical Medicine and Rehabilitation; Vanderbilt University Medical Center; Nashville, TN
Basem Attum, MD; Department of Orthopaedic Surgery; University of Louisville School of Medicine; Louisville, KY
Chad Coles, MD; Dept of Orthopaedic Surgery, Dalhousie University School of Medicine; Halifax, Nova Scotia, Canada
Jarrod Dumpe, MD; Department of Orthopaedic Surgery; Navicent Health; Macon, GA
Edward Harvey, MD; Division of Orthopaedic Surgery; McGill University Health Centre; Montreal, Quebec, Canada
Thomas Higgins, MD; Department of Orthopaedic Surgery; University of Utah; Salt Lake City, UT
Joseph Hoegler, MD; Department of Orthopaedic Surgery; Henry Ford Hospital; Detroit, MI
Jane Z. Liu, MD, Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH
Jason Lowe, MD; Department of Orthopaedics; Banner Health University of Arizona; Tucson, AZ
Christiaan Mamczak, DO; Orthopaedics and Sports Specialists; Beacon Health System; South Bend, IN
J. Lawrence Marsh, MD; Department of Orthopaedics and Rehabilitation, University of Iowa Health Care, Iowa City, IA
Anna N. Miller, MD; Division of Orthopaedic Trauma; Washington University Orthopaedics; St. Louis, MO
William Obremskey, MD; Orthopaedic Surgery and Rehabilitation; Vanderbilt University Medical Center; Nashville, TN
Michael Ransone, MD; Department of Orthopaedic Surgery; Carolinas Medical Center; Charlotte, NC
William Ricci, MD; Orthopedic Trauma Service; Hospital For Special Surgery; New York City, NY
David Ring, MD; Institute of Reconstructive Plastic Surgery of Central Texas; Austin, TX
Babar Shafiq, MD; Department of Orthopaedic Surgery, Johns Hopkins School of Medicine, Baltimore, MD

Conflicts of Interest and Source of Funding:

DR reports royalties from Skeletal Dynamics, royalties from Wright Medical, Deputy Editor for Clinical Orthopedics and Related Research, Deputy Editor for Journal of Orthopaedic Trauma, and expert testimony. KA reports APTA, Palladian Health, Pacira, and NeuroPoint Alliance, Inc. CM reports consulting from Smith & Nephew, speakers bureau for Smith & Nephew, speakers bureau for AO North America, publishing royalties for Springer-Verlag, publishing royalties for
Lippencott, and Journal Review for Journal of Orthopaedic Trauma. TH reports consulting from DePuy Synthes, consulting from Imagen, stock ownership in SMV Holdings, stock ownership in Orthogrid, and stock ownership in NT nPhase. BA reports consulting for Synthes and research support from Arthrex. EH reports Editor in Chief of Canadian Journal of Surgery, OTA BSFF Supp. EH reports Editorial Board of OTA International. EH is CMO of Greybox Solutions, Co-Founder Head of Medical Innovation for NXTSens Inc, Co-Founder CMO Chairman of Board of Directors of MY01 Inc., and Medical Device Advisor for Wavelite Inc. EH receives institutional support from J and J-SynthesDepuy and Stryker and is a board/committee member of Orthopaedic Trauma Association, Canadian Orthopaedic Association, and CIHR-IAB. JL reports consulting for Stryker. Other authors have no disclosures to report.

This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

Keywords: opioid; pain; musculoskeletal; orthopaedic trauma
BACKGROUND

Drug overdose deaths have become an epidemic in the United States. In the past fifteen years, deaths related to drug overdoses in the United States have tripled, mostly due to the rise in opioid-related deaths.1, 2 In the same time period, almost half a million people have died from prescription drug overdoses.1, 2 Opioids, including prescription drugs and heroin, are involved in 61% of drug overdose deaths.22 The rate of increase in deaths from commonly prescribed opioids has slowed slightly in the past few years, while death rates from the synthetic opioids fentanyl and heroin have increased by 72% and 21%, respectively.22 This epidemic has taken a significant toll on the health of the nation, with emerging findings that opioid-related deaths have led to a 0.21 year reduction in average life expectancy – contributing to the overall decrease in life expectancy from 2014 to 2015.3

The increase in opioid overdose deaths aligns with a proportional increase in opioid prescribing rates. Opioid prescriptions increased substantially from 2006 until 20124 with a desired focus on treating patient pain. Family medicine physicians overall provide the most opioids of any specialty; however, orthopaedic surgeons prescribe 7.7% of prescriptions despite representing only 2.5% of physicians.5 The increase in opioid prescriptions was unfortunately not associated with the anticipated reduction of reported pain among Americans.6 Without an improvement in patient outcomes, these prescriptions are needlessly associated with a high risk of abuse. Adding to the problem of oversupply for needs, many opioids go unused following orthopedic surgery7, 8 creating the possibility of nonmedical usage or diversion. Furthermore, of the patients who receive a first opioid prescription of any duration, 21% progress to receiving more prescriptions episodically and 6% progress to long-term use.9 Up to half of patients who
take opioids for at least three months remain on opioids five years later and are likely to become life-long users. Therefore, changing prescribing habits has been a high priority.

Due to the increasing recognition of the opioid crisis, several professional societies, healthcare systems, pharmacies, insurance companies, and governmental organizations have released guidelines and toolkits for the safe prescribing of opioids. While some of these guidelines address certain aspects of pain from musculoskeletal conditions, many are focused on the management of chronic pain, and unfortunately few give concrete examples of practical methods and prescribing practices that can be easily implemented when caring for acute musculoskeletal injuries. Thus, we aimed to produce comprehensive guidelines and recommendations that can be utilized by orthopaedic practices as well as other specialties to improve the management of acute pain following musculoskeletal injury.

METHODS

Panel and Target Audience

This guideline aims to provide evidence-based recommendations for the management of acute musculoskeletal pain. A panel of 15 members with expertise in orthopaedic trauma, pain management, or both was convened to review the literature and develop recommendations on acute musculoskeletal pain management. Chronic pain is outside the scope of this guideline.

Literature Review

The panel met in person in October 2017 to define the scope of the guideline and identify important topics for inclusion. These topics included: cognitive strategies, physical modalities, opioid safety and effectiveness, multimodal pharmaceutical strategies, medical assistance therapy, nonsteroidal anti-inflammatory drugs and fracture healing, nerve/regional/field blocks, pain and sedation assessment strategies, and healthcare system strategies. One or two panel
members were assigned to draft recommendations for each topic area. Literature searches were conducted through September 2018. Information about each included article is available in the Supplementary Digital Content table, http://links.lww.com/JOT/A648.

Grading Process

The methods described by the Grading of Recommendations Assessment, Development, and Evaluation Working Group were applied to each recommendation. This method yields a grade for the strength of the recommendation and a grade for the quality of the evidence. The grading of the evidence was based on the study designs, number of studies, sample sizes, and consistency of results among different studies. The panel assigned recommendations as “strong” (practices in which benefits are sure to outweigh potential harms) or “conditional” (the evidence was weaker or if the benefits do not significantly outweigh potential harms).

Approval of Guideline

Recommendations from each topic area were combined to produce a comprehensive guideline for management of acute musculoskeletal pain. All panel members reviewed and revised the combined guideline. The guideline was submitted to the Orthopaedic Trauma Association (OTA) for review and was approved on October 16, 2018.

Best Practice and Pain Management Recommendations

Due to the increasing recognition of the opioid crisis, several professional societies, healthcare systems, pharmacies, insurance companies, and governmental organizations have released guidelines and toolkits for the safe prescribing of opioids. While some of these guidelines address certain aspects of pain from musculoskeletal conditions, many are focused on the management of chronic pain, and few give concrete examples of practical methods and
prescribing practices that can be easily implemented when caring for acute musculoskeletal injuries.

We provide the attached Best Practice Recommendations and Pain Medication Recommendations (Tables 1-4) with the hope that they can be utilized by orthopaedic practices as well as other specialties (e.g. primary care, emergency medicine) to improve the management of acute pain following musculoskeletal injury. The Best Practice Recommendations for acute pain management following musculoskeletal injury are supplemented with the corresponding in-depth reviews presented in this full document. The Pain Medication Recommendations are divided into 3 clinical scenarios - Major Musculoskeletal Injury Procedure (e.g. operative fixation of long bone or complex joint fracture, extensive soft tissue injury or surgery, etc.); Minor Musculoskeletal Injury Procedure (e.g. operative fixation of small bone or simple joint fracture, minimal soft tissue dissection or surgery, etc.); Non-operative Musculoskeletal Injury (e.g. closed management of injury, laceration repair, etc.). The Best Practice Recommendations and the Pain Management Recommendations are meant to be used in conjunction with each other and should be individualized per treating physician discretion according to patient characteristics, local practice preferences, and applicable state laws.

Insert Tables 1, 2, 3, and 4 near here
RECOMMENDATIONS

Cognitive and Emotional Strategies

- The panel recommends discussing alleviation of pain, expected recovery course, and patient experience at all encounters (strong recommendation, moderate quality evidence).
- The panel recommends connecting patients with pain that is greater or more persistent than expected and patients with substantial symptoms of depression, anxiety, or post-traumatic stress or less effective coping strategies (greater catastrophic thinking, lower self-efficacy) to psychosocial interventions and resources (strong recommendation, low quality evidence).
- The panel recommends that clinicians consider using anxiety reducing strategies to increase self-efficacy and promote peace of mind with patients like aromatherapy, music therapy, or cognitive behavioral therapy (strong recommendation, low quality evidence).

Nociception and Pain

Nociception is the physiology of actual or potential tissue damage. Pain is the unpleasant thoughts, emotions, and behaviors that accompany nociception. There is wide variation in pain intensity for a given nociception.40 Pain catastrophizing is an ineffective coping strategy characterized by unhelpful preparation for the worst including rumination and helplessness.41 Greater catastrophic thinking is consistently associated with greater pain intensity.42 Increased symptoms of anxiety and depression, and greater alcohol use are also associated with higher pain intensity, while self-efficacy and fewer symptoms of depression are associated with less pain.43-45
Studies of musculoskeletal injuries, including ankle sprains and fractures, have found no association between pain intensity and degree of nociception (injury severity). Variations in pain intensity and magnitude of limitations are accounted for more by measures of psychosocial aspects of illness than by measures of pathophysiology.44, 46-53

There are also cultural differences in pain intensity and alleviation of pain with medication. Studies document good pain relief using non-opioid medication in patients recovering from fracture surgery in The Netherlands and Vietnam.54-57 In the United States, however, patients that take more opioids in the hospital after fracture surgery have more pain and less satisfaction with alleviation of pain.43-45 These findings suggest that psychological factors play a significant role in the intensity of pain for a given nociception.

Persistent pain in the absence of infection or implant problems correlates with psychosocial factors.53, 56, 58-77 Pain intensity, magnitude of limitations, and continued opioid use are associated with greater symptoms of depression or post-traumatic stress disorder and less effective coping strategies (e.g. greater catastrophic thinking).

Chronic pain is defined as pain lasting beyond the usual course of healing or more than 3 to 6 months, which affects the individual’s daily functioning and well-being.78 Several non-modifiable risk factors have been identified for the development of chronic pain including female gender, age greater than 65 years, intense acute pain, and low socioeconomic status. Several modifiable risk factors have also been identified including greater pain catastrophizing, greater pain-related fear, and greater symptoms of anxiety, depression, and post-traumatic stress disorder. Identifying and addressing psychosocial factors may limit persistent pain.
Psychosocial Interventions

A notable portion of trauma patients have substantial symptoms of anxiety, depression, and PTSD months after injury. Giving opioids for pain that is more intense and disabling than expected might represent a misdiagnosis and mistreatment of stress, distress, and less effective coping strategies.

Initial studies of psychosocial interventions to limit psychological distress and improve comfort and ability have had mixed results. The goals of these interventions are to improve overall mental health, decrease rates and severity of depression, anxiety and post-traumatic stress disorder. Interventions studied include cognitive-behavior therapy, self-management interventions and training, educational information access, peer support, and online social networking. Cognitive behavioral interventions have positive effects on pain relief in some trials. There is also evidence that web-based CBT is effective. Meta-analyses of Music Therapy demonstrates decreased anxiety and better sleep in the setting of chronic medical illness. Music Therapy has also demonstrated positive effects on pain relief and opioid dose reduction. Similarly, systematic reviews of aromatherapy have demonstrated anxiolytic effects and pain reduction. Further research on the utility of various interventions can help elucidate the most effective resources for trauma patients.

Physical Strategies

TENS

- The panel recommends the use of transcutaneous electrical stimulation (TENS) as an adjunct to other immediate post-injury or postoperative pain treatments (strong recommendation, low quality evidence).
• The panel can neither recommend nor discourage a specific TENS device or protocol.

Regimens that incorporate suboptimal frequencies not approaching a “sub-noxious or maximal tolerable/painful” setting lack effective pain modulation and should be avoided (conditional recommendation, low quality evidence).

Transcutaneous electrical nerve stimulation (TENS) attempts to modulate pain through delivery of low-voltage electric currents over the skin from a small portable device. The stimulation of large diameter peripheral afferent nerve fibers is believed to reduce pain by activating opioid receptors through an endogenous descending inhibitory pathway. The contraindications to the use of TENS include the presence of a pacemaker or implanted defibrillator, broken skin at the site of application, or significant lymphedema.

There are mixed results on the adjunctive use of TENS to modulate pain largely due to a relative paucity of high quality trials and significant interstudy heterogeneity due to the lack of any specific standardized treatment protocols. The panel’s literature review was restricted to TENS studies within the last 20 years.

The American Pain Society’s 2016 Clinical Practice Guideline for the management of postoperative pain recommends the consideration of TENS as an adjunctive modality with treatments directed near the surgical wound. The review panel found insufficient evidence for specific TENS regimens, but emphasized that positive effects were stronger when optimal predefined stimulation parameters were utilized. A meta-analysis (21 randomized clinical trials, RCTs) of TENS as an adjunct to reduce postoperative analgesic consumption found that the effectiveness may depend upon the current amplitude. The authors only included studies that report a “strong and/or definite sub-noxious, and/or maximal non-painful, and/or maximal tolerable” stimulation with currents >15mA or a
pulse frequency of 1-8Hz (acupuncture-like TENS; ALTENS) or 25-150Hz (TENS). The review found TENS (vs placebo TENS) around the surgical wound significantly reduced postoperative analgesic consumption by 26.5 % (range -6 to 51%): sub-noxious stimulation reduced opioid consumption by 35.5% whereas nonspecific trials yielded less effect (4.1% reduction). Overall difference in analgesic consumption favored TENS versus placebo with optimal median frequencies at 2Hz for ALTENS or 85Hz for TENS.104

The effectiveness of TENS within the orthopaedic literature is limited by non-standardized clinical trials often without reported or consistent TENS treatment protocols. Adjunctive TENS use within the immediate postoperative period after a total knee arthroplasty (TKA) postulates a trend towards favorable mean weighted reduction in opioid consumption versus placebo-TENS or standard care (3 Meta-analysis and 1 RTC).105 One systematic review and meta-analysis found TENS decreased pain severity at 1, 2 and 6 months after TKA, but this was based on low quality studies.105 Interestingly, both TENS and placebo-TENS (45-sec cutoff) were found to decrease postoperative TKA pain with active extension and fast walking highlighting a potential placebo effect that subsided by 6 weeks postoperatively vs. standard treatment.106 A prospective double-blind randomized trial on arthroscopic rotator cuff repair found TENS to significantly reduce immediate post-op opioid use by 25% at both 48hrs and 1 week.107 These results are moderately consistent with non-orthopaedic literature where TENS decreased postoperative opioid analgesic requirements (by 53% with mixed frequencies vs 35% with high frequency and 32% with low frequency settings) as well as opioid-related side effects when utilized as an adjunct to patient-controlled analgesia after lower abdominal OB/GYN surgery.108 In contrast, while TENS was determined useful after thoracic surgical procedures (only when less invasive approaches yield
mild to moderate post-op pain), TENS was ineffective for severe pain with invasive
approaches.109

A meta-analysis (27 RCTs) of six different types of electrical stimulation determined that
interferential current (IFC), a less common modality, was the only treatment to effectively
modulate pain intensity and change pain VAS scores (standardized mean difference=2.06, 95%
CI: 1.1-3.19), that the effect of high frequency TENS was uncertain and that low frequency
TENS was not effective.110

In conclusion, our systematic review indicates that TENS, when applied using strong,
sub-painful frequencies, is an effective multimodal adjunct to modulate acute orthopaedic injury
and postoperative pain. Recent publications demonstrate a substantial degree of inter-study
heterogeneity, most notably inconsistent descriptions of both TENS dosing intensities and
standardized outcome measures. The long-term tolerance of same dose TENS parameters and
strategies to prolong its effect is largely unknown. Higher quality clinical trials are necessary to
provide stronger evidence in favor of TENS as a consistent treatment for acute pain and
perioperative pain modulation.

\textbf{Cryotherapy}

\textbullet{} The panel recommends the use of cryotherapy for acute musculoskeletal injury and the
post-surgical orthopaedic patient as an adjunct to other postoperative pain treatments
(conditional recommendation, low quality evidence)

\textbullet{} The panel cannot recommend a specific cryotherapy delivery modality or protocol (no
recommendation, limited evidence)
Cryotherapy is the application of an external cold source in which the desired effect is a drop in tissue temperature. Cold sources that have historically been used include ice bags, cold gel packs, ice massage, cold water submersion, gaseous cryotherapy, and continuous-flow cryotherapy devices with and without pneumatic compression. Basic science studies have shown that the biologic effects of cold therapies are multifactorial. A decrease in tissue temperature results in decreased tissue edema and microvascular permeability, reduced delivery of inflammatory mediators, reduced blood flow via vasoconstriction, overall net decrease in tissue metabolic demand, and subsequent hypoxic injury. Additionally, the decrease in tissue temperature has been shown to increase the threshold of painful stimuli and increase the tolerance to pain.

Multiple studies have looked at the efficacy of cryotherapy in the post-operative orthopaedic patient for various anatomic areas including the knee, hip, shoulder, foot and ankle, wrist, and hand. Among the studies that evaluated cryotherapy versus a non-cryotherapy control, 10 randomized controlled trials and two meta-analyses have shown a significant benefit for pain control. Contrary to this, there have been eight randomized controlled trials that have shown no benefit to cryotherapy compared to a non-cryotherapy control. Many studies have also looked at cryotherapy’s ability to decrease opioid consumption compared to a non-cryotherapy control. Of these studies, eleven have shown a significant decrease in pain medication consumption compared with five studies showing no difference.
Many randomized controlled trials have compared continuous-flow cryotherapy devices to ice bags or packs. Nine studies have failed to show a difference in pain scores142-150 whereas five studies have shown improved pain with continuous-flow cryotherapy.151-155 No studies have shown superior pain control with ice bags or packs compared to continuous cryotherapy.

There are also inconclusive results pertaining to the difference in pain medication consumption when comparing continuous-flow cryotherapy with ice bags or packs. Five studies have demonstrated a decreased need for opioids with continuous cryotherapy,148, 150, 151, 154, 156 one study showed a lower consumption of pain medication with the use of ice packs,157 and five RCTs failed to show a difference between these two cryotherapy modalities.142, 145, 147, 149, 158 It is possible that continuous-flow cryotherapy results in a higher patient satisfaction with the cryotherapy treatments142, 148, 150 and that there may also be a benefit to continuous-flow cryotherapy at night.159 It is important to note the methodologic variability within the cryotherapy literature. Variables such as cryotherapy source, temperature, duration, and frequency can vary drastically from treatment groups in the same study, as well as study to study, making the assessment on the magnitude of effect difficult to determine. Because of the current literature’s methodological heterogeneity, we are unable to favor one method of cryotherapy application, protocol, or both.

Like most therapeutic interventions, cryotherapy can result in complications. Nerve palsies have been reported in the literature, mostly involving more superficial nerves such as the peroneal nerve, lateral femoral cutaneous nerve, ulnar nerve, and supraclavicular nerve. Care must be taken to provide sufficient insulation between the skin and the cryotherapy source, especially in patients with minimal subcutaneous fat. Nerve injuries can range from brief
paresthesias to complete axonotmesis.160,161 Frostbite has also been a concern, but to our knowledge has not been reported as a result of cryotherapy after an orthopaedic procedure.

Overall, the body of literature provides preliminary support for use of cryotherapy for acute pain management. However, future studies should focus on determining the most efficacious method of application and protocol for cryotherapy.

Opioid Safety and Effectiveness

- The panel endorses that all opioids used for pain carry a risk for misuse. Opioids are also associated with adverse clinical events. Patient comfort and safety must be carefully balanced when prescribing opioids. Due to the potential for misuse of all opioids, the panel recommends that the prescriber should utilize the lowest effective dose for the shortest period possible (strong recommendation, high quality evidence).

- The panel recommends not prescribing benzodiazepines in conjunction with opioids due to the significant risks of inconsistent sedation and potential for misuse (strong recommendation, high quality evidence).

- The panel recommends avoiding long-acting opioids in the acute setting (strong recommendation, moderate quality evidence).

- The panel recommends prescribing precisely. Commonly written prescriptions with ranges of dose and duration can allow tripling of daily dose to levels consistent with adverse events (strong recommendation, low quality evidence).

Opioids are the most commonly used medications for treatment of the majority of severe pain conditions.162 All opioids come with some level of safety concern. Regardless of the formulation used, there is always a risk of adverse events, as well as abuse, addiction or both. The number and severity of adverse events from opioids is related to their potency, half-life, and mode of use.
The number of milligrams in the dosage is not an indication of how strong the medication might be. Potent opioids (e.g., fentanyl is 50-100 times as potent as morphine) increase the number and severity of events. Although oxymorphone and oxycodone are about equally effective in treating pain, more adverse events are seen with oxymorphone due to its higher potency. Oxymorphone has 3-7 times the efficacy of morphine while oxycodone is only 1.5 times greater. Currently, immediate release opioids are prescribed at a significantly higher rate than extended release options. These extended release medications result in a 4.6 fold higher abuse rate and a 6.1 times increased diversion potential. The risk of addiction and abuse also has a strong correlation with the length of time the opioids are prescribed. While some patients may become addicted after long term therapy, a significantly larger proportion will show behavior of medication misuse and illicit drug use.

The main formulations on the market have vastly different pharmacokinetics. Immediate release opioids, which cause serum opioid levels to rapidly rise and decline with a shorter half-life, have a shorter period of pain relief. Long-acting (‘continued-release’ tablets) may deliver opioids for a longer period, but the amount of opioid absorbed is less per unit of time. This results in less fluctuation in serum drug levels keeping opioid concentration in the therapeutic range. For the inpatient setting, long-acting opioids may have the same effectiveness as short-acting opioids when used as monotherapy, but given newer multimodal pain management regimens this is not recommended current practice. Both short-acting and long-acting opioids have been shown to be effective in treating pain and increasing quality of sleep with the main difference being the number of pills prescribed will be higher in the short-acting group. Other drug formulations have been created to include supposed abuse deterrent properties, but in actuality may have a similar profile in regards to effectiveness and adverse events. Combining
opioids with other drugs has been shown to be more effective in managing pain than opioids alone. More specifically, combining opioids with NSAIDs has been shown to be more effective than opioids alone. Benzodiazepines do not have this beneficial synergy. Taking any of these formulations with food does not change the maximum dose of the medication delivered although when taken after a high fat meal, the time to maximum concentration is delayed.

The literature comparing the difference of the safety and efficacy of opiates for the treatment of pain in acutely injured musculoskeletal patients is scarce. The majority of the literature on safety and efficacy of opioids is in regard to chronic pain from both malignant and non-malignant conditions. The evidence in these areas is not strong. There is very little in the literature discussing safety and efficacy in the short-term post-injury setting. Hence, the appropriate dose for specific injuries or conditions is not well defined. Standard prescribing habits appear to routinely provide an excess amount of medication. A recent study found 81% of patients took 20 or fewer pills after knee arthroscopy. A study of opioid use by 250 patients who had undergone elective outpatient upper extremity surgery showed that while all patients were prescribed opioids for 30 days (30 pills), 52% used their prescription for pain control for only two days or less. On average, each patient took 11 pills leaving 19 pills unused. With fewer pills prescribed, there was a 79% reduction of leftover pills in the community, thus decreasing the potential for diversion.

Leaders in musculoskeletal care need to develop specific strategies based on burden of disease. Other nonopioid medications should be used with an intent to obtain balanced patient comfort and safety. Some data has shown that the risk for dependency increases significantly with increasing duration of use. Every effort should be made to minimize prescription length.
The main cause of death in patients using opioids is respiratory depression. This can occur with any opioid regardless of the type or formulation. This deadly complication is dose and concentration dependent with many other variables like opioid tolerance, BMI, respiratory disease, obstructive sleep apnea, and concomitant medications. Patients with a history of opioid use are expected to require more opioids for adequate pain relief while experiencing fewer adverse events due to tolerance.166,177 Common non-life threatening side effects seen in approximately 10% of patients prescribed immediate release opioids are pruritus, nausea, vomiting, dizziness, headache and somnolence.178,179 Addiction and abuse are complications often seen by psychiatrists or psychologists. Despite early, unsubstantiated claims of improved safety with long-acting opioids,180 the relative abuse and addiction potential with short-acting or long-acting opioids remains a question. Some evidence suggests that there is no difference in illicit drug use, misuse, or both when comparing long-acting vs short-acting opioids suggesting that prescribing long-acting opioids will not reduce abuse potential.181 A contradictory study showed less drug-seeking behavior with extended release formulations.182 Benzodiazepines should not be prescribed in conjunction with opioids because the risk of overdose and death increases significantly. There is a 3.9 times risk of overdose due to respiratory depression when opioids and benzodiazepines are prescribed at the same time.183

Combination Pharmaceutical Strategies

Multimodal Analgesia

- The panel recommends the use of multimodal analgesia (MMA) as opposed to opioid monotherapy for pain control (strong recommendation, moderate quality evidence).
• The panel recommends the use of periarticular injections as an adjunct to pain management that improves pain control post-operatively (strong recommendation, moderate quality evidence).

• The panel cannot recommend specific multimodal analgesia regimens at this time without further scientific evidence. MMA should be tailored to patients’ injuries and medical co-morbidities (strong recommendation, very low quality evidence).

Multimodal analgesia (MMA), also referred to as balanced analgesia, is the use of multiple analgesic medications (opioid and non-opioid) and non-pharmacologic interventions designed to affect peripheral and or central nervous system loci in the pain pathway. Benefits of this treatment paradigm include potentiation of multiple medication effects and greater pain control without relying on any one class of medication. MMA therefore mitigates the risk profile of each medication, while allowing for synergistic pain control from different classes of medication. Successful post-operative MMA may include psychotherapy, physical therapy, non-steroidal anti-inflammatory agents (NSAIDs), acetaminophen, gabapentinoids, regional anesthesia (single shot or peripheral nerve catheters), local injections, and opioids. Recent reviews, meta-analyses, and RCTs have shown that multimodal analgesia is effective in the perioperative period. There is, however, a paucity of literature in the orthopaedic trauma population, and therefore literature from other sub-specialties and surgical fields was included.

The majority of the orthopaedic literature addresses the arthroplasty population (14 articles). These articles addressed the following three main clinical trial questions: (1) comparison of different periarticular injections, (2) oral or “standard” medication regimen versus
addition of a peripheral nerve block (covered in later section), and (3) oral or “standard” medication regimen versus MMA.

Four studies compared “standard” medication regimens versus MMA. For example, additions to MMA strategies include gabapentin and duloxetine. Gabapentin seemed to decrease pain scores, but not opioid consumption, while duloxetine decreased opioid consumption, but not pain scores.

Finally, two studies evaluated the cost-effectiveness of MMA in arthroplasty patients. In both cases, the use of multimodal therapy decreased hospital costs, directly related to medication, as well as overall hospital costs for patient stay.

There is limited literature regarding the use of MMA in other non-trauma orthopaedic subspecialties. Two articles evaluated the use of MMA in foot and ankle surgery where MMA decreased length of stay and decreased pain in the first 24 hours after surgery. In spine surgery, the addition of MMA to a standard PCA regimen, decreased opioid use and improved mobilization. When compared with intravenous medication only, MMA decreased VAS at all time points following lumbar fusion surgery.

In orthopaedic trauma, addition of periarticular injection to standard pain control for hip hemiarthroplasty improved VAS and reduced opioid usage early in the postoperative course. Surgical site injection also improved pain for femoral fracture patients. In the upper extremity, MMA compared with PCA showed additional need for pain rescue in the PCA group and lower patient satisfaction. In a study of emergency department fracture patients, intravenous (IV) morphine or IV Tylenol + oral oxycodone was equally effective for pain control in the first hour after administration. However, patients in the IV morphine group did have less nausea and site itching.
The use of corticosteroids for postoperative pain has been validated in the literature in other specialties in medicine. As with other medications there are risks associated with the use of corticosteroids. Systemic side effects often associated with long-term therapy include the following: Cushingoid appearance, hirsutism, exophthalmos, hypertension, arrhythmias, gastritis, osteoporosis, avascular necrosis, dysphoria and hypokalemia just to name a few. From a postoperative perspective, concerns include a decrease or delay in wound healing potential and infection. There are no data to indicate that short-term use of corticosteroids causes an increase in infection. It is not recommended to use corticosteroids in patients over the age of 60 and in immunocompromised patients as some data suggests there is an increase in healing time. An increase in blood glucose 24 hours post-surgery should be expected and has not been associated with an increase in the rate of infection.

Corticosteroids given orally or intravenously can decrease the use of opioid analgesics by 50%. Benefits of corticosteroids include a decrease in postoperative nausea, decrease in opioid requirements, decrease in the length of hospital stay and more complete pain relief. The smallest dose that is effective should be prescribed. Doses ranging from 15mg of dexamethasone to 0.1mg/kg have been shown to be effective with no complications. A meta-analysis of perioperative use corticosteroids concludes an “Intermediate dose dexamethasone (0.11 to 0.2 mg/kg) is a safe and effective multimodal pain strategy after surgical procedures. The preoperative administration of the drug provides a greater effect on postoperative pain.” Physicians should consider perioperative dosing of corticosteroids in low risk patients and especially in patients at risk for dependency.
Managing Acute Pain for Patients on Long Term Opioids at Presentation

The panel recommends that perioperative analgesia should be managed with a multimodal analgesia regimen in all opioid-tolerant patients (Strong recommendation, moderate quality evidence).

- The panel recommends coordinating with acute pain service (APS) (or addiction medicine or psychiatry depending on resources) when inpatient and the patient’s prescriber when outpatient to ensure that there is only one prescriber for patients on medication assisted therapy (methadone, buprenorphine, or naltrexone), patients using illicit opioids, or patients misusing prescription opioids (Strong recommendation, moderate quality evidence).

Opioid-tolerant patients present a clinical challenge to effective perioperative pain management. These patients have a medical condition and should be treated with the same respect and dignity as a patient with any other pre-surgical medical condition. Developed nations have observed a large increase in the number of opioid-tolerant patients over the last decade.103, 208 In the United States, a combination of expanding heroin abuse, pain control metrics, and pharmacologic development of long-acting opioids has resulted in a dramatic rise in the number of opioid-tolerant patients. Managing perioperative pain in the opioid-tolerant patient is both a medical and a social challenge. Opioid-tolerant patients are at increased risk of receiving inadequate perioperative analgesia.103 This risk exists as the result of (a) a social stigmatization of opioid prescription and consumption209; (b) concerns for drug-seeking behavior210 or relapse of recovering addicts, or both; and (c) an incomplete understanding of opioid agonist and opioid replacement therapy pharmacokinetics.211
Opioid-tolerant patients present with one of the following three clinical scenarios: (1) scheduled, prescribed opioid (short-acting or long-acting) regimens; (2) prescribed medical assistance (methadone, buprenorphine); (3) illegal consumption of prescription or non-prescription opioids. Each patient can be further subdivided into those who are actively experiencing acute pain in an emergent setting (secondary to trauma) or whose treatment necessitates elective surgery (nonunion, mal-union, infection, hardware removal). The care of these patients can be difficult and there is little literature to guide treatment.

At the time of this publication, there are a limited number of observational studies examining acute perioperative pain management in the opioid-tolerant patient. However, care must be taken when managing these patients. In two studies on orthopaedic trauma populations, it has been shown that patients on opioids are at higher risk for receiving prescriptions from multiple prescribers in the postoperative period, which leads to more prescriptions, higher doses and longer duration of opioid use. What follows is a review of available literature and clinical recommendations for perioperative analgesia in the opioid-tolerant patient.

It is critical to identify opioid users immediately after injury or in the pre-operative period to avoid uncontrolled acute pain. Physicians should obtain information on type, dose, frequency, and last consumption of all opioids, which will allow conversion to morphine equivalent doses. The opioid-tolerant patient experiences pain, physiologically, differently than the opioid-naive patient because of:

- Cross tolerance occurs between different opioids
- Increased sensitivity to natural and experimental pain
 - Results in higher than expected post-operative pain scores and slower resolution of acute pain in the postoperative period.
c. High affinity partial μ-agonist and antagonist block the effect of standard opioids. When these medications are utilized patients require high opioid doses to displace competitive medications, before analgesia takes effect.

The following sections provide brief recommendations for specific populations of opioid-tolerant patients, including those taking chronic short-acting opioid therapy, those using illicit opioids, and those taking methadone, buprenorphine or naltrexone.

Chronic short-acting opioid therapy

Perioperative pain management of patients consuming routine and scheduled oral opioids should include:

1. Instructions to continue baseline medication the morning of surgery through the post-operative period.220
 a. If transdermal fentanyl patches are used pre-operatively, patients should be converted to an IV morphine equivalent dose. This is because of alterations in fentanyl release during fluid shifts and body temperature changes observed with surgery.$^{220, 221}$

2. Titrate short-acting μ-agonist to effective pain control

3. When oral medications cannot be consumed the 24 hour morphine equivalent dose should be calculated for conversion to intra-venous management until oral medications can be reinstated.215

Illicit Opioids

Perioperative pain management is further complicated by inaccurate consumption history, and variation in strength of illicit drugs:

1. If available, consult addiction medicine, acute pain service, or psychiatry.103
Methadone (Slow release oral morphine or opioid agonist).215

Perioperative pain management of patients consuming methadone should include:

1. If available, consult addiction medicine, acute pain service, or psychiatry.103
2. Continue baseline methadone throughout the perioperative period including the morning of surgery
3. If unable to take oral medication, convert 24-hour dose to IV methadone according to conversion chart and administer in 2-4 divided doses.
 a. Pharmacokinetics of methadone are influenced by CYP450 and CYP3A4 metabolism and may also vary based upon patient’s own metabolism. Consult pharmacist or acute pain service specialist for conversion to the appropriate morphine equivalent dose.222
4. Supplement perioperative pain with short-acting agonist
5. Close respiratory monitoring due to combined effects
6. Educate patient on acute opioid taper

Buprenorphine (partial μ-agonist alone or mixed with kappa antagonist (naloxone)).215, 223-225

Addiction medicine, acute pain service, or psychiatry (depending on local resources and expertise) should be consulted when managing patients on buprenorphine, which is commonly administered transdermally for chronic pain and sublingually for substitution in opioid abusers. Owing to the medication high affinity for Mu receptors and kappa antagonist effect other agonists may have limited analgesia effect and typically require high doses to achieve affect. For this reason, close respiratory monitoring is required when using short and long-acting opioids. Perioperative pain management of patients consuming buprenorphine will vary according to the clinical setting:
1. Elective surgery
 a. Mild to moderate pain
 i. Consider management with increased doses of buprenorphine (when low doses are prescribed at baseline)
 ii. Continue buprenorphine and add short-acting \(\mu \)-agonist
 b. Moderate to severe pain
 i. Discontinue 72-hours prior to surgery and convert to short-acting agonist.
 1. Higher than expected doses are anticipated for analgesia for three to four days while buprenorphine is cleared from the body
 2. Reassess analgesia daily and expect to decrease full agonist between days three and four
 3. Manage acute pain with a tapering regimen
 ii. Patient should be opioid-free for 24-hours before restarting buprenorphine to avoid withdrawal.
 2. In acute traumatic presentation
 a. Conversion to methadone according to conversion tables and titrate dose to effect
 b. When clinical presentation does not afford conversion and titration, recommend aggressive acute titration to full opioid agonist.
 i. High doses are required to displace high affinity buprenorphine from \(\mu \)-receptors
 ii. Requires continuous cardiopulmonary monitoring
Naltrexone (opioid antagonist often used to limit relapse following opioid dependence) rehabilitation

Due to its antagonist mechanism, naltrexone creates a difficult clinical scenario, particularly in the acute traumatic setting. Naltrexone reduces opioid sensitivity by blocking receptors, but also upregulates µ-receptors. During initial treatment of post-injury and perioperative pain, a patient may not be sensitive to a short-acting µ-agonist and may require many times the normal dose. After two weeks, sensitivity to opioids may increase, risking overdose. When the acute pain period is over, and naltrexone is restarted, it carries the risk of inducing withdrawal. Therefore, the recommendation is to consult addiction medicine, acute pain service, or psychiatry.

NSAIDs and Fracture Healing

- The panel recommends for the routine use of NSAIDs as part of a comprehensive analgesic plan for operative and non-operative fracture care (strong recommendation, low quality evidence).

One of the major barriers to using non-narcotic analgesics in orthopaedic trauma has been the reluctance to employ nonsteroidal anti-inflammatory drugs (NSAIDs) in the setting of fracture or arthrodesis surgery of any kind. For decades, NSAIDs were avoided due to fears about bone healing. However, a review of the evidence has found the data on the effect of NSAIDs on bone healing too conflicting to make a clinical recommendation one way or the other. Given the proven track record of NSAIDs in alleviating musculoskeletal pain, withholding NSAIDs from our analgesic armamentarium is a significant disadvantage. Under the current circumstances, the basis of this prohibition merits a critical review.
The basic science studies have been conflicting, at best. The most rigorous basic science studies are animal models of spinal fusion, while fracture healing models yielded mixed results at best.230 Endpoints for animal studies demonstrated that NSAIDs contributed to reduced mechanical strength (as bone stiffness and load to failure) and delayed time to union.231,232 Nonetheless, this lack of clarity has re-enforced the perception of a deleterious effect. Further animal studies attempted to examine what the possible mechanism of action could be, and tried to establish if there was a lesser impact from COX-2 specific inhibitors compared to indomethacin in the animal setting, again with mixed results.232,233

Clinical studies are similarly unclear, but four of the clinical papers should be examined critically as they are frequently cited when raising alarm over NSAIDs in fracture healing. Giannoudis et al. used a retrospective case-control model to compare femoral shaft fractures that had not healed to a group that healed successfully.234 The odds ratio for nonunion with the use of NSAIDs was reported as a disturbingly high 10.7 (95\% CI: 3.55, 33.23), but the study was small and underpowered (sample size of 32 patients), NSAID use was severely underrepresented in the control group, and this same sample showed no effect of smoking. Further, by starting with a group of 32 non-united diaphyseal femur fractures, investigators may well have been preselecting the group most likely to take NSAIDs (for the pain of nonunion). Bhattacharyya et al. point out exactly this bias when discussing their finding of higher NSAID use in the subset of humerus fractures that were treated closed and did not heal.235 To avoid selection bias, Bhattacharyya’s group queried Medicare data (1995-2000) from two states for patients with a humeral shaft fracture. Starting with nearly 10,000 records, they found 104 patients (1.1\%) with a nonunion. They reported that patients who used NSAIDs or opioids within the first 90 days after fracture had relative risks for nonunion of 3.7 (95\%CI:2.4, 5.6) or 1.6 (95\%CI: 1.1,2.5)
respectively. More recently, Jeffcoach and co-workers retrospectively reviewed long bone fractures over a two-year period at a single trauma center. The patients who suffered a long bone fracture and received NSAIDs during the inpatient postoperative days (12% of 1901 patients) had an odds ratio for a complication (nonunion, malunion, infection) of 2.17 (1.15-4.10). In a well-designed, prospective randomized trial on different durations of indomethacin treatment (three days, one week, or six weeks) for prophylaxis of heterotopic ossification, Sagi et al. showed that at six months after surgery, the highest incidence of nonunion of the posterior acetabular wall (67%) occurred in the group with the longest duration (six weeks) of indomethacin use. While there were only thirteen patients in this group and that raises concerns over adequate power, the rate of nonunion of the posterior wall in all groups was surprisingly high.

While isolated clinical investigations such as these have been cited as evidence to withhold NSAIDs during fracture treatment, this conclusion is not supported by a critical examination of the existing literature. Two recent comprehensive meta-analyses by Kurmis et al. and Marquez-Lara et al. have concluded that while some animal studies may raise a concern, there is no high-quality literature support for NSAID inhibition of fracture healing in the clinical setting. Ultimately, these critical evaluations of the existing clinical literature must stand as the cornerstones of our practice guideline recommendations on this issue.

Based on the unknown clinical role of opioids on fracture healing, recent investigations have tried to examine a potential effect of opiate analgesics on fracture healing. Morphine has been demonstrated to inhibit osteocalcin in vitro. Chrastil et al. used a rat model to examine opioid influence on femur fractures and found that animals treated with opiate analgesia formed callus in greater volume, but that this callus was more disorganized and mechanically weaker.
than the control animals. The OPIAD (Opiate Induced Androgen Deficiency) Syndrome describes the naturally occurring reduction in serum testosterone seen clinically with both acute and chronic opioid administration and Brinker et al. have previously demonstrated hypogonadism to be among the metabolic abnormalities identified in patients with nonunion. Chrastil and co-workers attempted to determine if supplemental testosterone might be used to mitigate the effects of opioids on callus formation and strength, but they found supplemental testosterone was ineffective for this purpose. This study casts doubt on the theory that the effect of opioids on bone healing is solely mediated by hypogonadism, since the opioid-treated animals demonstrated a drop in serum testosterone, but still had impaired callus formation despite administration of supplemental exogenous testosterone. Overall, any conclusions on the role of opioids in bone healing are very preliminary, and have not been corroborated with quality clinical studies, but given its potential impact on clinical practice, the field certainly merits further bench and clinical investigation.

With regards to the effectiveness of NSAIDs for pain control, there are now some head-to-head clinical comparisons available between NSAIDs and opioids for the acute management of musculoskeletal complaints in both the pediatric and adult populations. To date, these studies have demonstrated NSAIDs to provide equally effective analgesia.

To summarize, there is simply no conclusive clinical evidence to prohibit the use of NSAIDs in fracture care. Further, risks to the population from oral opioid use, and the prolonged use after resolution of musculoskeletal injury, are well-established. NSAIDs also provide effective analgesia in the setting of musculoskeletal pain. Taking all of these factors and the existing clinical evidence into account, we recommend the routine use of NSAIDs as part of a comprehensive analgesic plan for operative and non-operative fracture care.
Nerve/Regional/Field Blocks

This section is organized around the following three time periods: (1) During a hospital admission prior to fracture surgery; (2) Intraoperatively and the immediate post-operative period; (3) The remote (>3 months) post-operative period. In each of these temporal periods, in relation to fracture surgery, we asked what is the evidence that nerve, or regional, or field blocks improve pain control and decrease use of opioids?

During a hospital admission prior to fracture surgery

- The panel recommends that regional nerve blocks (femoral nerve or fascia iliaca) should be placed in patients with acute hip fractures at the time of presentation to the Emergency Department (strong recommendation, high quality evidence).

The evidence for this recommendation is confined to hip fracture patients. Multiple studies show that nerve blocks placed in the emergency department (ED) can be accomplished by trained personal with minimal risks or complications. These blocks have consistently been found to be effective in comparison to standard of care (parenteral opioids alone) in decreasing opioid use and improving patient’s pain in the pre-operative period. These results have been confirmed in multiple RCTs and some of these studies are placebo-controlled with blinded assessment of the outcome. Although there is high-quality evidence for these benefits of nerve blocks, instituting routine nerve blocks for hip fracture patients cannot be accomplished by the surgeon in isolation. System-wide changes in practice with involvement of other care providers (emergency medicine and anesthesia) are required.

There are other possible benefits of ED regional nerve blocks for hip fracture patients. One RCT found that these blocks decrease the incidence of delirium in hip fracture patients who are at intermediate risk for this condition. Another RCT found a functional post-operative
benefit in the hospital (walking distance and stair climbing ability) that lasted until six weeks after surgery.256 There is less strength of evidence for these benefits because they have only been assessed in one study each.

The nerve block technique has varied between studies. Some studies have utilized a three-in-one femoral nerve block while others recommend a fascia iliaca block. Most studies recommend ultrasound guidance for either type of block.249, 255 The fascia iliaca compartment block requires less precision and is probably more easily learned. The location is more remote from the neurovascular bundle and thus nearly eliminates the risk of intraarterial injection. Femoral nerve and fascia iliaca blocks have also been shown to have similar efficacy in total knee arthroplasty patients.250 Recommended training has been 30 minutes of didactic training followed by variable periods of practice and supervised clinical performance. This short duration of training, however, may assume preexisting ultrasound skills.249, 252

Five studies have compared “standard” preoperative MMA to the addition of a nerve block. Addition of a femoral nerve block to preoperative oxycontin and celecoxib did not make a difference in total knee arthroplasty patients.259 YaDeau, et al., however, showed lower visual analog pain scales (VAS) with addition of a femoral nerve block to standard epidural anesthesia.260 Divella’s group evaluated resting and dynamic VAS scores for three days after total hip arthroplasty. Pain control was oxycontin and acetaminophen versus continuous epidural levobupivacaine. Resting VAS scores between the two groups were similar for days one and two, but VAS scores were significantly lower on day three for patients in the oxycontin group. Dynamic VAS scores for the oxycontin group were higher on day one and lower on day three.261 The use of general anesthesia with preoperative oxycodone and celecoxib versus intrathecal bupivacaine, morphine, and clonidine showed higher pain scores, faster time to first rescue
medication need, and longer length of stay in the general anesthesia group. Addition of multimodal postoperative pain medication (including oxycodone, tramadol, and ketorolac) compared to parenteral patient-controlled analgesia showed less narcotic consumption, lower pain scores, and higher satisfaction as well as higher physical therapy goal achievement in the MMA group.

The studies reviewed have not reported any complications of blocks, but most admit that the study was not powered to detect rare complications. Clinicians should be aware of the possibility of complications such as inadvertent intravascular injection, infection, intraneural injection, and masking symptoms of compartment syndrome. All studies report a rapid onset of pain relief from these blocks, however the effect is often not complete and adjunctive analgesics are often necessary.

Intraoperatively and the immediate post-operative period

- The panel recommends that clinicians consider local or regional block anesthesia during operative treatment of fractures and as part of the post-operative multimodality pain control regimen. (strong recommendation, high quality evidence)

- The panel recommends that if a block is going to be performed for intraoperative and post-operative pain control, a continuous catheter be considered over a single-shot block to better facilitate post-operative pain control and diminish rebound pain. (conditional recommendation; moderate quality evidence)

The use of peripheral anesthesia via local injections, field blocks, single-shot regional blocks and indwelling catheter regional blocks have all been shown to decrease pain scores and opioid consumption in the immediate and short-term perioperative period. The bulk of this data comes from the arthroplasty literature with contributing papers from the sports medicine, foot and
The data outside the orthopaedic literature is even more robust. Problems with these lower extremity blocks include a possible increase in rate of falls and rebound pain that has been reported in some studies.

Five articles have compared various periarticular injections. Early postoperative pain scores and opioid usage were lower with continuous femoral nerve catheter plus sciatic block than with periarticular injection with ropivacaine or liposomal bupivacaine. Ng and colleagues, however, found equivalent outcomes with femoral nerve catheter versus periarticular injection.

In addition, periarticular injection alone was not superior to post-operative epidural analgesia for pain control. The addition of periarticular liposomal bupivacaine to a periarticular injection cocktail was more effective than ropivacaine at 6 and 12 hours postoperatively, however intrathecal morphine was more effective at six hours. Addition of ropivacaine and ketorolac to a periarticular injection cocktail improved postoperative pain control.

In one RCT, a significant decrease in opioid consumption and better pain scores were found at 48-hours after hip arthroscopy in patients who received a femoral nerve block (FNB) versus general anesthesia (GA). However, the FNB group had a significant increase in rate of falls compared to the GA group highlighting one of the risks of this type of anesthesia which in part accounts for its moderate recommendation.

In another RCT, the benefit of local injection was assessed. A significant decrease in pain scores and opioid consumption was found for eight hours and trended less over 48 hours in patients receiving a local injection compared to general anesthesia alone for femur fractures. The injection (containing ropivacaine, morphine, and epinephrine) was administered at the time of surgical fixation of the fracture. There were no complications attributed to the local injection itself.
Pre-operative sciatic or popliteal continuous peripheral nerve block (CPNB) were compared to post-operative patient-controlled analgesia (PCA) in a retrospective study of patients undergoing fixation of talus and calcaneal fractures. While Numerical Rating System pain scores, duration of stay, and side effects were equivalent in the two groups over 72-hours, morphine equivalent consumption on post-operative day one by the PCA patients was 30-fold that of the CPNB patients.

A single-shot popliteal block was compared to an intraoperative ankle block in a RCT of patients undergoing elective forefoot surgery. The length of block time in the popliteal block group was 44% longer than the ankle block group. While the patient satisfaction and perceived effectiveness with both types of blocks was similar, the popliteal block group showed significantly lower VAS pain scores the night after surgery and throughout the next morning.

In an RCT of patients undergoing open reduction and internal fixation of distal radius fractures, GA patients needed more IV pain medications in the PACU compared to those who received a single-shot brachial plexus block. In the 12 to 24 hours after surgery, patients who received the block showed a more aggressive rise in VAS scores and narcotic use consistent with the block wearing off and the patients experiencing rebound pain. Ultimately, the GA group had a statistically significantly higher total narcotic use at 72 hours compared to the block group.

Peripheral anesthesia in the form of a block can be administered either via a single-shot injection or by placing a catheter that has the ability to deliver anesthetic around the nerve in a continuous fashion until the catheter is removed. Rebound pain is the pain a patient experiences when the block wears off and can be quite significant. This is typically because the patient has not been taking other post-operative pain medications due to low pain scores during the duration that the block has been in effect.
Goldstein et al. addressed the problem of rebound pain phenomenon and were one of the first groups to write about this effect. They compared a single-shot popliteal block to general anesthesia (GA) in an RCT of patients undergoing fixation of ankle fractures. Significantly lower pain scores were reported for the block group at 2, 4, and 8 hours after surgery, but significantly better pain scores were found in the GA group from 8 to 24 hours.

There is some evidence that continuous catheters control pain for a longer duration of time and may help diminish rebound pain by allowing the patient to get farther in the recovery process. In one RCT, a single-shot popliteal (SSP) block was compared to a continuous popliteal block (CPNB) in patients undergoing fixation of unstable ankle fractures. The CPNB catheter was removed at 48 hours. Over the first 72 hours, patients in the CPNB group took significantly fewer oral narcotics and had lower pain scores. Another study of patients undergoing open fixation for calcaneal fractures compared controls (no regional blocks) vs. a single-shot block or against a continuous popliteal nerve block. In the 36 hours after surgery, the patients in the continuous block used significantly fewer IV narcotics than did the other two groups. However, a limitation of this study was that their post-operative pain protocol changed multiple times during the course of the study.

The remote (>3 months) post-operative period

- The panel makes no recommendations for this time period, as we were unable to find any data to guide us on whether regional or local anesthesia performed before, during, or in the immediate post-operative period has any effect on improving pain scores or decreasing opioid consumption at this time frame. (no recommendation, no evidence)
Pain/Sedation Assessment

Inpatient Pain Assessment

- The panel recommends regular assessment of pain for both inpatients and outpatients in order to evaluate the need for initiation or continuation of opioid therapy (strong recommendation, low quality evidence).

Effective January 1, 2018, the Joint Commission required new and revised pain assessment and management standards to improve quality and safety of care. The requirements speak to (1) prioritization of pain assessment and management as an organizational priority; (2) establishment of medical staff in leadership roles to address performance improvement activities related to patient safety; (3) assessment and management of patient pain and minimization of risks associated with treatment with opioids; (4) data collection to monitor performance related to patient safety; and (5) compilation and analysis of data to inform continued performance improvement.

Inpatient Pain Assessment

- The panel recommends that sedation assessment be conducted by nursing staff on all inpatients prior to and following administration of an opioid medication (strong recommendation, low quality evidence).

In 2012, The Joint Commission issued a warning regarding adverse drug events associated with opioid analgesics, most importantly respiratory depression, among patients in the inpatient hospital setting. The incidence of opioid-induced respiratory depression ranges from 0.1 to 37%. Nurses are typically the first to detect respiratory depression. One cause for opioid-related adverse events, however, is inadequate monitoring of patients administered opioids, occurring in about a third of cases. Patient monitoring includes sedation assessments,
frequency and quality of respirations, and electronic methods such as pulse oximetry. A survey of nurses belonging to the American Society for Pain Management Nursing indicated nurses find sedation scales and watching the patient to be more useful than electronic methods. However, while there is no evidence to inform the frequency of monitoring, sedation scale scores should be a major consideration in the decision to administer opioids for pain management. It is important to monitor sedation as it is an indicator of impending opioid-induced respiratory depression; detecting over-sedation can prevent a more clinically significant adverse event. The Pasero Opioid-induced Sedation Scale (Table 5), which has been validated for assessing sedation during opioid administration, is an example of a tool that can be used by nurses to assess patients prior to and following administration of prescription opioids.

Naloxone

- The panel recommends co-prescribing of naloxone when factors that increase risk of overdose are present (strong recommendation, low quality evidence).

For patients prescribed opioids, risk mitigation strategies are an important consideration. While limited evidence exists on the outcomes of prescribing naloxone in combination with opioids, distribution via community-based harm reduction programs have demonstrated decreased risk of death due to opioid overdose. The majority of programs, however, have been conducted with illicit use populations with a focus on harm reduction as opposed to a patient safety focus for patients prescribed opioids for acute or chronic conditions. The CDC Guideline for Prescribing Opioids for Chronic Pain recommend co-prescribing or offering naloxone to patients with increased risk for opioid overdose who are prescribed opioids. These
risk factors include history of overdose or substance use disorder history, opioid dosages ≥50 MME/day, or co-prescribing with benzodiazepines.

System Strategies

Prescription Drug Monitoring Programs

- The panel recommends that all prescribers register to gain access to their state’s Prescription Drug Monitoring Program (PDMP) and regularly query the PDMP before prescribing opioids (strong recommendation, low quality evidence).

Prescription Drug Monitoring Programs (PDMPs) are databases that track scheduled medications dispensed from pharmacies. The databases were developed to reduce prescription drug misuse and diversion. The conceptual model of PDMPs assumes that increased monitoring of opioid prescriptions is associated with changes in opioid prescribing behavior, opioid diversion and supply, as well as opioid-related morbidity and mortality. Numerous unintended consequences of PDMPs have been described in the literature and include the following: (1) potential decrease in legitimate prescribing; (2) patient privacy concerns; (3) inability to connect patients with known aberrant use to resources; (4) potential increase in illegal prescription drug activity or users switching to other substances such as heroin; (5) further reduced patient visit time due to time required to check PDMP; and (6) potential decrease in patient satisfaction ratings. Finally, PDMPs vary tremendously from state-to-state based on (1) the number of schedules included; (2) the frequency of updates; (3) housing entities; (4) accessibility; (5) access requirements; (6) reactive and proactive reporting; (7) associated prescriber education; and (8) interstate data sharing.
Four reviews of PDMPs have been published to date \(^{289-292}\) with the most recent one synthesizing articles published through 2015. \(^{289}\) Worley et al. concluded that PDMPs were associated with lower substance abuse treatment admission rates, fewer opioid prescriptions, less diversion, and less “doctor shopping”. The authors acknowledge, however, that results depend on the specific components of each unique PDMP and that evidence is limited. \(^{291}\) Haegerich et al. believe PDMPs to be effective, but that effect sizes from the papers they reviewed were generally very low and may depend on specific PDMP components such as mandatory review or proactive reporting. \(^{292}\) Gugelmann et al. concluded that PDMPs seem to have benefits including reduced per capita supply of opioids and fewer incidents reported to poison control centers, however, there are also studies showing no effect. \(^{290}\) Finally, Finley et al. found no consistent pattern, with efficacy varying by state. \(^{289}\)

Several articles on PDMP efficacy have been published since 2015, and the results have been mixed as well. The Florida PDMP was associated with a 25% decline in oxycodone-caused deaths. \(^{293}\) but a multi-state study found PDMPs were not associated with reduction in overdose deaths and were, in fact, sometimes associated with increased mortality from non-prescription opioid drugs, such as heroin. \(^{294}\) There was also evidence of increased ED visits for heroin overdoses in New York, while visits for prescription opioid overdose leveled. \(^{295}\) In contrast, Dowell and colleagues found “relatively large but statistically insignificant reductions” in heroin overdose deaths, indicating that perhaps a decrease in opioids does not lead to an increase in heroin use. \(^{25}\)

Three studies on PDMP implementation found no association with decreased opioid prescribing \(^{296-298}\) while three others found that PDMP implementation reduced opioid prescriptions \(^{25, 299, 300}\) and overdose deaths. \(^{25}\) Some studies found PDMPs to be effective in
specific groups, such as patients with multiple provider episodes (i.e., ‘doctor shopping’) whose prescribers were sent an unsolicited report by the state,301 Medicare Part D enrollees,302 and Medicaid patients.299 Finally, due to the variability in PDMPs by state, one study rated the strength of the PDMP and found that a 1\% increase in PDMP strength was associated with a 1\% decrease in overdose deaths, indicating room for improvement in outcomes for PDMPs of lower strength.303

While the literature remains inconsistent, PDMPs are a promising intervention, especially when the PDMPs are of robust strength. We recommend checking the PDMP prior to prescribing. Steps must be taken, however, to alleviate the potential consequences of curtailing prescribing based on the results of a PDMP search, particularly the potential for patients to switch to heroin. Therefore, we recommend referring patients to behavioral health and addiction medicine if the PDMP indicates aberrant behaviors. Furthermore, the evidence does demonstrate that PDMPs are not a panacea for preventing prescription opioid misuse, abuse, and diversion.

Prescriber and Patient Education

- The panel recommends that departments support opioid education efforts for prescribers and patients (strong recommendation, moderate quality evidence).

Physicians often lack training in pain management and addiction; 59\% of physicians report medical school preparation regarding chronic pain treatment as “fair” or “poor”304, and median instruction time spent on pain education in US medical schools is 11.1 hours, compared to 27.6 hours in Canada.305 After graduate medical education, only five states (CT, IA, MD, SC, TN) require physicians to obtain periodic CME on prescribing, substance use disorders, or pain management.306
The effectiveness of educational interventions for physicians is strong. A synthesis of reviews on CME education find that studies on CME interventions consistently show improvement in both physician performance and patient health outcomes. The most effective CME sessions are interactive, use multiple methods, involve multiple exposures, and are longer. After New Mexico began requiring CME in 2012-2013 about pain and addiction along with required PDMP registration and query, the state saw statistically significant increased physician knowledge, self-efficacy, and attitudes, as well as a decrease in both statewide morphine milligram equivalents dispensed and drug overdose deaths. Online educational interventions have been moderately effective. Education in conjunction with clinical decision support is also effective at changing naloxone prescribing rates.

Other strategies described in the literature include brief one-on-one physician education, development and dissemination of guidelines and policies, and Risk Evaluation and Mitigation Strategy (REMS). Public health detailing is an approach based on the pharmaceutical sales strategy, by which messages are pushed using brief one-on-one educational visits during the normal workflow. Staten Island saw a reduction in high-dose prescribing and stabilizing of days’ supply after implementing this strategy. Similarly, an ED in Australia delivered one-on-one education via a clinical champion and was very effective at improving information given to patients, increasing notifications sent to general practitioners, reducing total dose prescribed, and incorporating non-opioid therapies. This approach is, however, resource intensive and has a limited scope of impact.

Development of department guidelines, policies, or both is another option. Hill et al. described an intervention within surgical specialties at an academic medical center which included dissemination of operation-specific opioid prescribing guidelines. This intervention
significantly reduced the number of pills prescribed. When a similar approach was implemented in the emergency department setting the number of patients prescribed opioids and number of pills prescribed decreased by 40% and 15%, respectively, with reductions sustained over 2.5 years. Finally, Risk Evaluation and Mitigation Strategies (REMS) developed by the FDA in 2007 required pharmaceutical manufacturers to take steps to reduce risks associated with the medication. Strategies can include medication guides for patients, clinician education, and physician certification. Both immediate release and extended release opioids are now subject to these regulations. Thus, manufacturers are required to fund continuing education regarding opioid prescribing. Overall, the resulting SCOPE of Pain educational program has been shown to increase physician knowledge and reported intention to change practice. The SCOPE of Pain program has also implemented a “train the trainer” approach which facilitates wide dissemination of information. Physicians are advised to be aware of potential conflicts of interest when attending pharmaceutical company-funded sessions.

Overall, education is a necessary, but insufficient, approach to improving prescribing and patient outcomes. In addition, the literature is mostly limited to opioids for chronic pain management rather than acute or post-surgical pain. Regardless, we recommend supporting opioid education efforts both in graduate medical education and through continuing education. Literature that focuses on evaluating the effects of patient education is limited, but the few studies conducted support effective patient education. Strategies included educational pamphlets, web-based interactive education, and clinician-delivered education. All interventions that included knowledge as an outcome demonstrated a significant effect, and many studies observed changes in risky behaviors, such as sharing pills.
storage, saving and disposal of pills, driving and taking more medication than prescribed.

Clinical Decision Support

- The panel recommends that prescribers, to the extent possible, develop, support, or both the implementation of clinical decision support regarding opioid prescribing in the electronic medical record (strong recommendation, low-quality evidence).

We reviewed the literature on the impact of clinical informatics interventions on opioid prescribing. A total of 14 articles were identified that included prescribing outcomes and the quality of the evidence was low. Most of the studies used study designs that did not have any concurrent control group. This is a significant weakness due to the national attention surrounding the opioid crisis currently in lay press, politics, and medicine. Without concurrent controls, the effects seen after implementation of these interventions could be overestimates if prescribing was already decreasing due to the current climate around opioids. There were, however, two randomized controlled trials that demonstrated an effect on some outcomes. Most of the 14 studies included patients in the emergency department or specifically for patients receiving chronic opioid therapy. Only one study assessed clinical decision support in an orthopaedic surgery population.

There is a gap in the literature surrounding acute pain outside of the emergency room, other than after cesarean section and following hand surgery. This is an important area of research since a short course of opioid treatment for acute pain can often result in chronic opioid therapy.

All of these studies were conducted in urban settings or across a wide area including both urban and rural settings. It is critical to study these interventions in rural areas since they are substantially burdened with this epidemic. In addition, prescriber response to these
interventions may differ in outlying hospitals and in practices that are not part of an academic hospital where prescribers are consistently exposed to new literature, new techniques, and other clinical innovations. In addition, numerous articles were identified that described clinical decision support regarding opioids but did not report on outcomes of the intervention.

While these feasibility and implementation articles are important for fully describing interventions, decisions cannot be made regarding continuation, iterative improvement, or adoption of the intervention by another institution without evidence of efficacy. The lack of follow-up outcomes papers could represent publication bias, whereby articles in the literature are more likely to have been effective. For example, only one study found no effect of the intervention331 while the rest of the interventions were effective,328, 329, 332-334, 336, 338, 339 or mixed (had effect on some outcomes but not all).326, 327, 330, 335, 340 Finally, most studies included outcomes associated with prescriptions (i.e. number of prescriptions, number of pills, average dose, number of risky concurrent prescriptions for opioids with benzodiazepines, number of extended release prescriptions).326, 328, 330, 331, 335, 336, 338-340 Others measured outcomes associated with safe prescribing (i.e. urine drug screens, treatment agreement, functional assessments, risk assessments, documented diagnosis).327, 329, 332-334 The conceptual framework implicitly presented is that these interventions lead to safer prescribing practices that lead to fewer high risk prescriptions that in turn ultimately reduces risk of misuse, abuse, or diversion of prescription opioids. However, no studies measured rates of overdose, opioid use disorder, or other outcomes to demonstrate this pathway.

Despite the low-quality evidence, we strongly recommend pursuing clinical decision support to the extent possible. Potential approaches include power plans/order sets,331, 335, 340
Dashboards, risk assessment and screening, alerts, and other decision support.

Order set interventions could include recommended pain management regimens and dosing based on patient characteristics, prepopulating the dosing at a minimum rather than a range (i.e. one pill 4x per day rather than 1-2 pills 4-6 times per day), and including non-opioid medication options.

Dashboards are useful for tracking physician adherence to guidelines and protocols. They are particularly useful because they provide actionable information to the prescriber. For example, a prescriber can see what patients are due for a certain screening and conduct the appropriate screening at the patient’s next visit. Dashboards can also promote transparency, accountability, and natural competition by which prescribers compare their statistics to those of their partners, leading to improved performance. Dashboards vary in the metrics tracked (e.g., urine drug screens, pain agreements, functional status assessment, visits with behavioral health providers, high dose opioids, and concurrent opioids and benzodiazepines). Dashboards also vary regarding the level of integration into workflow. Some are housed on the intranet for prescribers to access on-demand while others are “pushed” to prescribers at defined time intervals.

Many risk assessment tools are accessible that indicate risk for opioid abuse, misuse, and diversion. Available tools include the Opioid Risk Tool the Screener and Opioid Assessment for Patients with Pain (SOAPP-R), the Drug Abuse Screening Test (DAST), the Brief Risk Interview, and the Current Opioid Misuse Measure (COMM). Additionally, guidelines recommend that providers screen patients prior to prescribing opioids although the CDC guidelines caution against placing full confidence in the sensitivity and specificity of these screening tools because consequences of underestimation or overestimation of risk can be
An electronic risk assessment program called Pain Assessment Interview Network, Clinical Advisory System (PainCAS) is completed by the patient prior to their visit, either at home or upon registration at the clinic, and includes the SOAPP-R and COMM, both validated instruments. Once completed, administrative staff uploads the report to that patient’s electronic medical record. Another electronic assessment is a short 3-item screening for tobacco, alcohol, and drug use that is programmed into the electronic triage tool in the ED. These studies report significant increase in screening and documentation, however, their use does not appear to alter patient clinical outcomes.

Alerts were originally developed to reduce adverse drug events by alerting the provider to contraindications or allergies associated with medications. Since then, alerts have been developed for additional situations, including opioids risk. It is critical when developing alerts to ensure information is meaningful and does not trigger at unacceptable rates, thus causing “alert fatigue”. Alerts may include patient risk factors, suggest non-opioid medications or non-pharmaceutical modalities, inform the prescriber that the patient was referred to pain management, or inform the prescriber that the patient has an existing opioid care plan.

Other examples of decision support implemented in the included articles include “smart set” documentation, a patient-facing tablet decision aid, and comprehensive prescribing tools. “Smart set” documentation standardizes practices by walking prescribers through the appropriate prescribing policies. Similarly, another study described implementation of a large set of decision aids into the EMR as part of Safe and Appropriate Opioid Prescribing Program (SAOP). Aids included medication menus, medication alerts, preferred and maximum doses, links to guidelines, prompts for alternative treatments and medications, patient treatment agreements, and a link to the PDMP. Finally, one article discussed a patient-facing decision aid
in which patients used a tablet-based decision tool to learn about post-cesarean pain and oxycodone to guide her in making decisions about the number of pills she wanted.336

These approaches are promising interventions to improve patient safety and reduce opioid prescribing. Many of these interventions included multiple components in addition to the electronic tool such as pocket cards, educational sessions, prescribing policies, care plans, and patient-facing pain policies.326, 328, 335, 339, 340 While a multi-pronged intervention has greater likelihood of success, it is challenging to identify the unique contribution of the electronic tool in each case.

CONCLUSIONS

Balancing comfort and patient safety following acute musculoskeletal injury is possible when utilizing a true multimodal approach including cognitive, physical, and pharmaceutical strategies. In this document, we attempt to provide practical, evidence-based guidance for clinicians in both the operative and non-operative settings to address acute pain from musculoskeletal injury. We also organized and graded the evidence to both support recommendations and identify gap areas for future research.

Acknowledgements: The authors acknowledge the following individuals who helped in the development and preparation of these Clinical Practice Guidelines: Donald T. Kirkendall, ELS (a contracted medical editor).

REFERENCES

1406 motion, transcutaneous electrical nerve stimulation, and continuous cooling pad following total
device compared with intermittent cooling using an ice bag after total knee arthroplasty.
1409 143. Demoulin C, Brouwers M, Darot S, et al. Comparison of gaseous cryotherapy with more
1412 144. Desteli EE, Imren Y, Aydin N. Effect of both preoperative andpostoperative cryoceutical
treatment on hemostasis and postoperative pain following total knee arthroplasty. Int J Clin Exp
1413 Med. 2015;8:19150-19155.
1415 prospective, randomized study on postoperative pain in patients undergoing arthroscopic rotator
1417 Device after Total Knee Arthroplasty: A Randomized Controlled Trial Study. J Knee Surg.
1420 compression bandaging and cold therapy in postoperative total knee replacement surgery. Orthop

principles versus intrathecal analgesia with conventional principles in total knee arthroplasty: a
263. Lamplot JD, Wagner ER, Manning DW. Multimodal pain management in total knee
264. Moucha CS, Weiser MC, Levin EJ. Current Strategies in Anesthesia and Analgesia for
265. Amundson AW, Johnson RL, Abdel MP, et al. A Three-arm Randomized Clinical Trial
Comparing Continuous Femoral Plus Single-injection Sciatic Peripheral Nerve Blocks versus
Periarticular Injection with Ropivacaine or Liposomal Bupivacaine for Patients Undergoing
Total Knee Arthroplasty. Anesthesiology. 2017;126:1139-1150.
266. Ng FY, Ng JK, Chiu KY, et al. Multimodal periarticular injection vs continuous femoral
nerve block after total knee arthroplasty: a prospective, crossover, randomized clinical trial. J
Arthroplasty. 2012;27:1234-1238.
multimodal pain regimen with periarticular injection after total hip arthroplasty: a randomized,
Between Liposomal Bupivacaine Injection and Intrathecal Morphine After TKA. Clin Orthop
analgesia protocol with periarticular medication injection in total knee arthroplasty: a
79

Copyright © 2019 The Author(s). Published by Wolters Kluwer Health, Inc.

319. Davis D. CME and the pharmaceutical industry: two worlds, three views, four steps. CMAJ. 2004;171:149-150.

LIST OF TABLES

Table 1 - Best Practice Recommendations* for alleviation of acute pain after Musculoskeletal Injury. *In conjunction with Pain Medication Recommendations and individualized per Treating Physician Discretion according to patient characteristics, local practice preferences, and state law.

Table 2 - Pain Medication Recommended Taper* following a Major Musculoskeletal Injury Procedure (e.g. operative fixation of long bone or complex joint fracture, extensive soft tissue injury or surgery, etc.). Dosage and duration can be less if tolerated. *In conjunction with other Best Practice Recommendations and individualized per Treating Physician Discretion according to patient characteristics, local practice preferences, and state law.

Table 3 - Pain Medication Recommended Taper* following a Minor Musculoskeletal Injury Procedure (e.g. operative fixation of small bone or simple joint fracture, minimal soft tissue injury or surgery, etc.). Dosage and duration can be less if tolerated. *In conjunction with other Best Practice Recommendations and individualized per
Treating Physician Discretion according to patient characteristics, local practice preferences, and state law.

Table 4 - Pain Medication Recommended Taper* following a **Non-operative Musculoskeletal Injury** (e.g. closed management of injury, laceration repair, etc.). Dosage and duration can be less if tolerated. *In conjunction with other Best Practice Recommendations and individualized per Treating Physician Discretion according to patient characteristics, local practice preferences, and state law.

Table 5 - Pasero Opioid-induced Sedation Scale (POSS) With Intervention.

Footnotes for Table 1:

N/A not applicable; ISS injury severity scale; ICU intensive care unit; CHD coronary heart disease; CTS carpal tunnel syndrome; MVC motor vehicle crash; ED emergency department; OB/GYN obstetrics and gynecology; TENS transcutaneous electrical nerve stimulation; RCT randomized clinical trial; OA osteoarthritis; TKA total knee arthroplasty; THA total hip arthroplasty; CTSI close soft tissue injury; POD post-operative day; ASA American Society of Anesthesiologists; XR extended release; ACL anterior cruciate ligament; MIS minimally invasive surgery; PLIF post lumbar interbody fusion; ORIF open reductions internal fixation; NSAID non-steroidal anti-inflammatory drug; BSN Bachelor of Science Nursing; ER/LA extended release/long acting; SCOPE Safe and Competent Opioid Prescribing Education; CAS clinical assessment system; COT chronic opioid therapy.
Table 1 - Best Practice Recommendations* for alleviation of acute pain after Musculoskeletal Injury. *In conjunction with Pain Medication Recommendations and individualized per Treating Physician Discretion according to patient characteristics, local practice preferences, and state law.

<table>
<thead>
<tr>
<th>Category</th>
<th>Recommendations</th>
</tr>
</thead>
</table>
| Pain Medication Strategies | • Use multimodal analgesia (MMA). MMA may include non-steroidal anti-inflammatories (NSAIDs), acetaminophen, gabapentinoids, and immediate-release opioids.
• Prescribe the lowest effective immediate-release opioid dose for the shortest period possible.
• Do not use extended-release opioids.
• Consider local or regional block anesthesia as part of the post-operative multimodal regimen. |
| Cognitive Strategies | • Discuss alleviation of pain, expected recovery course, and patient experience at all encounters.
• Connect patients with pain that is greater or more persistent than expected and patients with substantial symptoms of depression, anxiety, or post-traumatic stress or less effective coping strategies (greater catastrophic thinking, lower self-efficacy) to psychosocial interventions and resources.
• Consider using strategies for optimal mindset such as aromatherapy, music therapy, or approaches based on cognitive behavioral therapy. |
| Physical Strategies | • Use immobilization, ice, and elevation appropriately.
• Consider the use of transcutaneous electrical stimulation (TENS) units.
• Consider the use of cryotherapy units. |
| Strategies for Patients on Long Term Opioids at Presentation | • Utilize balanced physical, cognitive, and pharmaceutical strategy for alleviation of pain
• Ensure that there is only one prescriber by coordinating with acute pain service (APS) (or addiction medicine or psychiatry depending on resources) when inpatient and the patient’s prescriber when outpatient. |
| Pain Assessment Strategies | • Assess pain and sedation regularly for inpatients with short validated tools. |
| System Strategies | • Query the state and relevant regional Prescription Drug Monitoring Program (PDMP) before prescribing opioids.
• Develop and support the implementation of clinical decision support for opioid prescribing in the electronic medical record.
• Support opioid education efforts for prescribers and patients.
• Implement pain medication prescribing strategy or policy. |
Table 2 - Pain Medication Recommended Taper* following a **Major Musculoskeletal Injury**

Procedure (e.g. operative fixation of long bone or complex joint fracture, extensive soft tissue injury or surgery, etc.). Dosage and duration can be less if tolerated. *In conjunction with other Best Practice Recommendations and individualized per Treating Physician Discretion according to patient characteristics, local practice preferences, and state law.

<table>
<thead>
<tr>
<th>Status</th>
<th>Opioid</th>
<th>Non-opioid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inpatient</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oxycodone/Acetaminophen 5mg/325mg 1 tab po q 4 hours PRN</td>
<td>Ketorolac 15mg IV q 6 hours x 5 doses, followed by Ibuprofen 600mg po q 8 hours</td>
</tr>
<tr>
<td></td>
<td>moderate pain</td>
<td>Gabapentin 100mg 1 tab po TID</td>
</tr>
<tr>
<td></td>
<td>5mg/325mg 2 tabs po q 6 hours PRN</td>
<td>Scheduled Acetaminophen 500mg po q 12 hours</td>
</tr>
<tr>
<td></td>
<td>severe pain (hold next acetaminophen scheduled dose)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hydromorphone 1mg IV q 3 hours PRN for severe breakthrough pain</td>
<td></td>
</tr>
<tr>
<td>Post Discharge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 1 (at discharge)</td>
<td>Oxycodone/Acetaminophen 5mg/325mg 1 tab po q 4 hours PRN</td>
<td>Ibuprofen 600mg po q 8 hours x 7 days (Rx Given)</td>
</tr>
<tr>
<td></td>
<td>Dispense - #42 (1 time Rx, No Refills)</td>
<td>Gabapentin 100mg 1 tab po TID x 7 days (Rx given)</td>
</tr>
<tr>
<td></td>
<td>Hydrocodone/Acetaminophen 5mg/325mg or Tramadol 50mg</td>
<td>Scheduled Acetaminophen 500mg po q 12 hours x 7 days (can increase as combined opioid analgesic decreases)</td>
</tr>
<tr>
<td></td>
<td>(Only If Necessary – 3 Rx Max)</td>
<td></td>
</tr>
<tr>
<td>Week 2</td>
<td>1 tab po q 4 hours PRN Dispense - #42</td>
<td>Scheduled Acetaminophen 500mg po q 12 hours (can increase as combined opioid analgesic decreases)</td>
</tr>
<tr>
<td>Week 3</td>
<td>1 tab po q 6 hours PRN Dispense - #28</td>
<td>Scheduled Acetaminophen 1000mg po q 12 hours (can increase as combined opioid analgesic decreases)</td>
</tr>
<tr>
<td>Week 4</td>
<td>1 tab po q 8 hours PRN Dispense - #21</td>
<td>Scheduled Acetaminophen 1000mg po q 8 hours (can increase as combined opioid analgesic decreases)</td>
</tr>
<tr>
<td>Weeks 5+</td>
<td></td>
<td>NSAIDs PRN as directed Gabapentin if necessary (then wean)</td>
</tr>
</tbody>
</table>

Copyright © 2019 The Author(s). Published by Wolters Kluwer Health, Inc.
Table 3 - Pain Medication Recommended Taper* following a **Minor Musculoskeletal Injury Procedure** (e.g. operative fixation of small bone or simple joint fracture, minimal soft tissue injury or surgery, etc.). Dosage and duration can be less if tolerated. *In conjunction with other Best Practice Recommendations and individualized per Treating Physician Discretion according to patient characteristics, local practice preferences, and state law.

<table>
<thead>
<tr>
<th>Status</th>
<th>Opioid</th>
<th>Non-opioid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Discharge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 1</td>
<td>Hydrocodone/Acetaminophen 5mg/325mg or Tramadol 50mg 1 tab po q 6 hours PRN Dispense - #28 (1 time Rx, No Refills)</td>
<td>Ibuprofen 600mg po q 8 hours x 7 days (Rx Given) Gabapentin 100mg 1 tab po TID x 7 days (Rx given) Scheduled Acetaminophen 1000mg po q12 hours (can increase as combined opioid analgesic decreases)</td>
</tr>
<tr>
<td>Week 2</td>
<td>Hydrocodone/Acetaminophen 5mg/325mg or Tramadol 50mg (Only If Necessary – 2 Rx Max) 1 tab po q 8 hours PRN Dispense - #21</td>
<td>NSAIDs PRN as directed Gabapentin if Necessary (up to 1800mg/day)</td>
</tr>
<tr>
<td>Week 3</td>
<td>1 tab po q 12 hours PRN Dispense #14</td>
<td>Scheduled Acetaminophen 1000mg po q8 hours (can increase as combined opioid analgesic decreases)</td>
</tr>
<tr>
<td>Weeks 4+</td>
<td></td>
<td>NSAIDs PRN as directed Acetaminophen PRN as directed</td>
</tr>
</tbody>
</table>
Table 4 - Pain Medication Recommended Taper* following a **Non-operative Musculoskeletal Injury** (e.g. closed management of injury, laceration repair, etc.). Dosage and duration can be less if tolerated. *In conjunction with other Best Practice Recommendations and individualized per Treating Physician Discretion according to patient characteristics, local practice preferences, and state law.

<table>
<thead>
<tr>
<th>Injury Category</th>
<th>Opioid</th>
<th>Non-Opioid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor Injury</td>
<td>Tramadol 50mg (Only If Necessary - 2 Rx Max)</td>
<td>NSAIDs PRN as directed</td>
</tr>
<tr>
<td>(e.g. small bone fracture, sprain, laceration, etc.)</td>
<td>1 tab po q 6 hours PRN</td>
<td>Scheduled Acetaminophen 1000mg po q8 hours, then PRN as directed</td>
</tr>
<tr>
<td></td>
<td>Dispense - #20, then #10</td>
<td></td>
</tr>
<tr>
<td>Major Injury</td>
<td>Hydrocodone/Acetaminophen 5mg/325mg or Tramadol 50mg (Only If Necessary – 2 Rx Max)</td>
<td>NSAIDs PRN as directed</td>
</tr>
<tr>
<td>(e.g. large bone fracture, rupture, etc.)</td>
<td>1 tab po q 6 hours PRN</td>
<td>Scheduled Acetaminophen 1000mg po q12 hours, then PRN as directed</td>
</tr>
<tr>
<td></td>
<td>Dispense - #20, then #10</td>
<td></td>
</tr>
<tr>
<td>Score</td>
<td>Category</td>
<td>Intervention</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>S</td>
<td>Sleepy, easy to arouse</td>
<td>Acceptable; no action necessary; may increase opioid dose if needed</td>
</tr>
<tr>
<td>1</td>
<td>Awake and alert</td>
<td>Acceptable; no action necessary; may increase opioid dose if needed</td>
</tr>
<tr>
<td>2</td>
<td>Slightly drowsy, easily aroused</td>
<td>Acceptable; no action necessary; may increase opioid dose if needed</td>
</tr>
<tr>
<td>3</td>
<td>Frequently drowsy, arousable, drifts off to sleep during conversation</td>
<td>Unacceptable; monitor respiratory status and sedation level closely until sedation level is stable at less than 3 and respiratory status is satisfactory; decrease opioid dose 25% to 50% or notify prescriber or anesthesiologist for orders; consider administering a non-sedating, opioid-sparing non-opioid, such as acetaminophen or an NSAID, if not contraindicated</td>
</tr>
<tr>
<td>4</td>
<td>Somnolent, minimal or no response to verbal or physical stimulation</td>
<td>Unacceptable; stop opioid; consider administering naloxone; notify prescriber or anesthesiologist; monitor respiratory status and sedation level closely until sedation level is stable at less than 3 and respiratory status is satisfactory</td>
</tr>
</tbody>
</table>