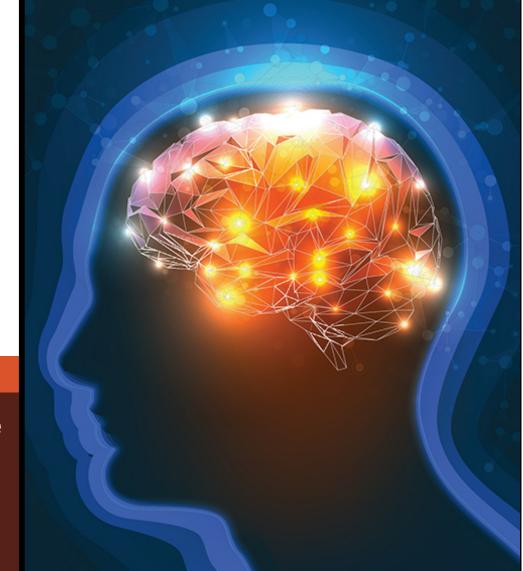

₩#CHAIR2019

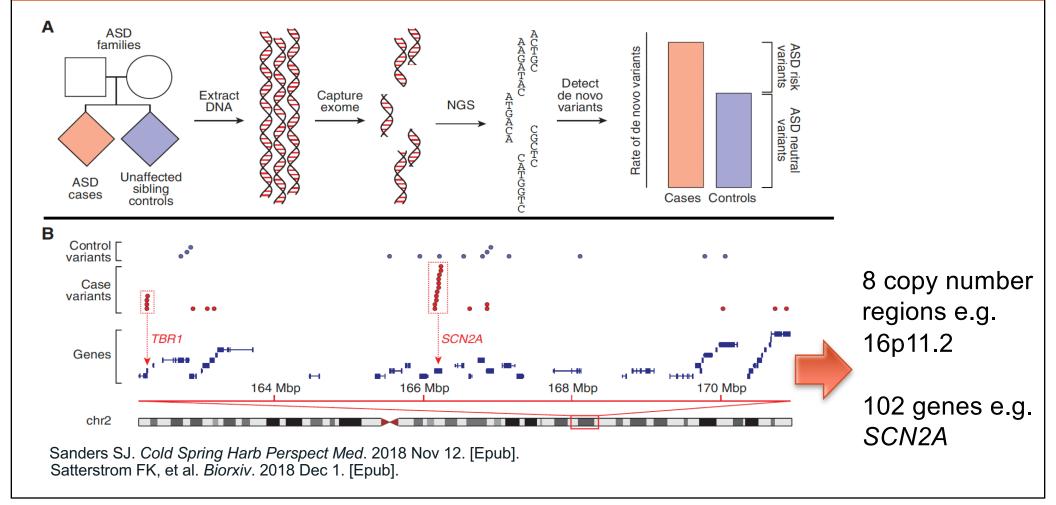
Genetic Testing in Autism Spectrum Disorder: Its Role in Clinical Management


Stephan J. Sanders BMBS, PhD

Assistant Professor Department of Psychiatry University of California San Francisco San Francisco, CA

Learning Objective

Integrate genetic testing into the clinical management of autism spectrum disorders.



Autism Genetics

- Greatest contribution from genetics of any psychiatric disorder
- Rapid progress in gene identification in last 5 years
- Various types of genetic variations in DNA contribute to ASD in the clinic
 - Three groups of variations: 1) Syndromic/Mendelian; 2) Rare variants;
 3) Common alleles
 - Testing can help identify patients in first two groups and contribute to clinical management – predominantly via family counseling

Sestan N, et al. Neuron. 2018;100(2):406-423; Sanders SJ. Cold Spring Harb Perspect Med. 2018 Nov 12. [Epub].

Autism Genetics: Gene Discovery

Available Genetic Tests

- Mendelian disorders: specific testing for syndromes such as Fragile X (everyone), Rett/MECP2 (regression in girls, static encephalopathy in boys), PTEN (macrocephaly), NF1 (caféau-lait), TSC1/2 (distinctive tumors, Wood's lamp)
- Large-scale rare mutations
 - Often de novo (new mutation in the child)
 - Variations in the structure of the DNA contribute to ASD. These are called copy number variants (CNVs) – e.g. 16p11.2 deletions
 - Detected by chromosomal microarray (CMA). Clinical geneticists consider this standard of care for initial evaluation in ASD and intellectual disability. Widely available, some reimbursement

Ho KS, et al. Int J Mol Sci. 2016;17(12):2070; Sanders SJ, et al. Neuron. 2015;87(6):1215-1233.

Available Genetic Tests (cont.)

Small-scale rare mutations

- Often *de novo* (new mutation in the child)
- Variation in the DNA sequence in the regions of genes that encode proteins (collectively the exome) called single nucleotide variants (SNVs) in insertions/deletions (indels). E.g. SCN2A, CHD8
- Detected with whole-exome sequencing (WES). Increasingly available, but more limited acceptance and reimbursement
- Whole-genome sequencing (WGS): more expensive and more thorough way to capture coding mutations. Non-coding mutation detection is research only.
- Common variants: Genotyping array, e.g. 23andMe; research only

Fernandez BA, et al. Dialogues Clin Neurosci. 2017;9(4):353-371.

Indications

- ACMG: Syndrome tests (e.g. Fragile X) and chromosomal microarray for any child who is being seen with ASD and intellectual disability who has not had genetic testing
 - Other guidelines (e.g. AACAP) recommend testing only in the presence of unusual features (e.g. regression, dysmorphic)
 - WES will be added to next round of guidelines
 - Often little impact on treatment, but may be important for family counseling and support groups
 - Families increasingly want to know
- Ascertainment dramatically impacts yield, increased by:
 - Severe developmental delay, seizures, dysmorphology, female sex

ACMG = American College of Medical Genetics; AACAP = American Academy of Child and Adolescent Psychiatry.

Barton KS, et al. *Genet Med.* 2018;20(7):737-744; Schaefer GB, et al. *Genet Med.* 2013;15(5):399-407; Volkmar F, et al. *J Am Acad Child Adolesc Psychiatry.* 2014;53(2):237-257.

Results


Mendelian:

- "This is the cause of what is going on"
- -Referral to clinical geneticist and genetics counselor

Rare highly-penetrant mutations:

- "This is likely to be contributing in a significant way to what is going on"
- -Variants of unknown significance (VUS) can be vexing
- Most primary providers will refer to geneticist/counseling
- -Future impact on research and treatment

Results (cont.)

Common variants:

- No useful information for family counseling or management
- Be extremely wary of commercial products claiming diagnostic accuracy

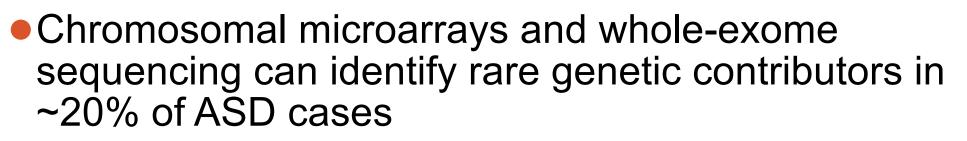
Biomarkers:

 None that predict diagnosis reliably before clinical manifestations

Grove J, et al. 2017. Available at https://www.biorxiv.org/content/biorxiv/early/2017/11/27/224774.full.pdf.

Gene Therapies?

- Specific rare mutations offer an avenue to gene therapy
- First targets likely to be Mendelian: e.g. Angelman's syndrome, Rett syndrome, Fragile X


Significant obstacles:

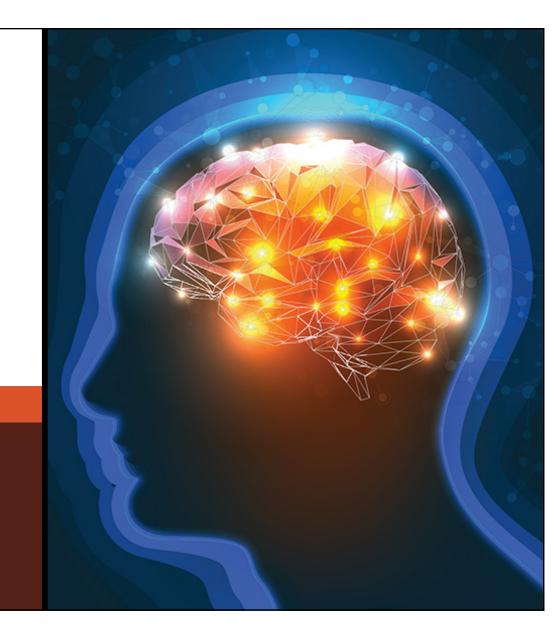
- Targeting (deep) CNS: compared to Spinal Muscular Atrophy
- When to intervene? At what age can ASD be reversed?
- Regulatory hurdles: What level of severity? What outcome to measure?

Approaches:

- CRISPR-Cas9 editing; CRISPR activation (CRISPRa)
- Antisense oligonucleotides (ASO)

Conclusions

Gene therapy trials are on the horizon for many of these


 Common variants found by commercial genotyping arrays have no current role in diagnosis or clinical management of ASD

SMART Goals Specific, Measurable, Attainable, Relevant, Timely

 Over the next five years, all individuals with a diagnosis of ASD should receive chromosomal microarrays and wholeexome sequencing as a standard of practice to improve diagnosis, provide access to relevant support groups, and as a foundation for future therapies

Don't forget to fill out your evaluations to collect your credit.

