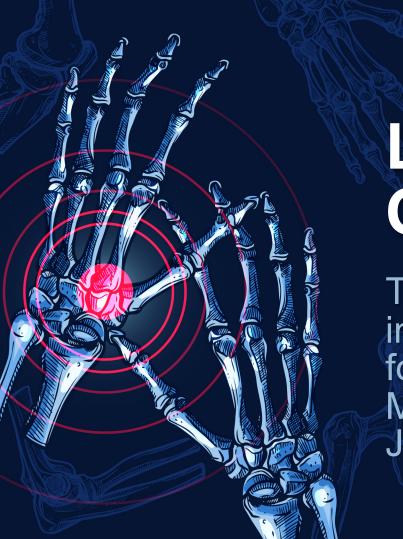

FROM PATHWAYS TO PROs

Translating the Latest Evidence for Current and Emerging JAK Inhibitors to Clinical Practice

Supported by an educational grant from Gilead Sciences, Inc.



Leonard H. Calabrese, DO

Cleveland Clinic Lerner College of Medicine of Case Western Reserve University Cleveland Clinic Foundation Cleveland, OH

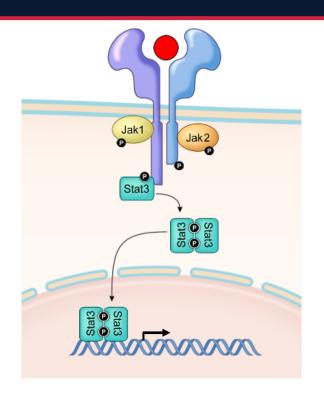
Learning Objective

Translate basic clinical immunology to current evidence for the pathophysiology and MOA for current and emerging JAK inhibitors

Protein Tyrosine Kinases (PTKs)

- 90 PTKs identified
 - Receptor (PDGF-R/EGFR)
 - Non-receptor PTKs: 32 cytoplasmic, including JAK and SYK — integral in signal transduction
- Significant experience with PTK inhibitors in oncology
 - Multiple approved therapies

FDA-Approved PTK Inhibitors

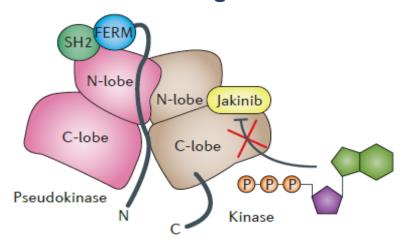


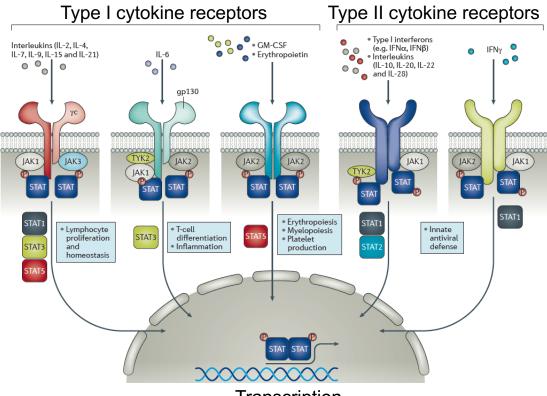
Indication	Agents
Oncology	Acalabrutinib, afatinib, alectinib, axitinib, bosutinib, brigatinib, cabozantinib, ceritinib, crizotinib, erlotinib, gefitinib, ibrutinib, imatinib, lapatinib, lenvatinib, midostaurin, neratinib, nilotinib, osimertinib, pazopanib, ponatinib, regorafenib, sorafenib, sunitinib, vandetanib, vemurafenib
Hematology	Ruxolitinib, fostamatinib
Pulmonology	Nintedanib
Inflammatory disease/immunology	Tofacitinib, baricitinib

Roskoski R. http://www.brimr.org/PKI/PKIs.htm. Last updated June 30, 2018.

Type I/Type II Cytokine Signaling^{1,2}

- Rapid membrane to nucleus signaling
 - 1. Cytokines bind transmembrane receptors that are associated with JAKs
 - 2. Binding activates JAKs
 - 3. JAKs phosphorylate receptors
 - 4. STATs bind receptors
 - 5. JAKs phosphorylate STATs
 - 6. STATs translocate to the nucleus
 - 7. STATs bind DNA and regulate transcription
- Simple and essential pathways
- 1. FDA Advisory Committee Meeting. Tofacitinib for the Treatment of Rheumatoid Arthritis. NDA 203214 Briefing Document. May 9, 2012.
- 2. Schwartz DM, et al. Nat Rev Rheumatol. 2016;12(1):25-36.


JAK Protein Phosphorylation


JAKs use ATP to phosphorylate substrates

Jakinibs block ATP binding to JAKs

JAK-STAT Pathways for Typel/II Cytokine Receptors

Transcription

Type I/II Cytokine Signal Transduction Pathways

Cytokines Signal Through Different JAK Pairs

- Four JAK family members: JAK1, JAK2, JAK3, and TYK2¹
- Seven STAT family members: STAT1, 2, 3, 4, 5a, 5b, and 6 activate transcription^{1,2}

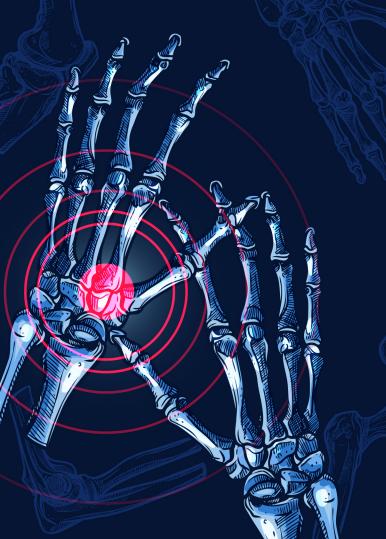
Example of Cytokines that Signal through JAK/STAT Combinations

1. O'Sullivan LA, et al. Mol Immunol. 2007;44:2497-2506. 2. Ghoreschi K, et al. Immunol Rev. 2009;228:273-287.

JAK Inhibitors for RA

Agent	Selectivity	Status in RA	Other Indications ^a
Tofacitinib ¹⁻³	JAK3/1	Approved	Approved: PsA, UC Investigational: AS, alopecia areata, JIA, lupus
Baricitinib ²⁻⁴	JAK1/2	Approved	AD, alopecia areata, SLE, diabetic nephropathy
Upadacitinib ^{2,3}	JAK1	Phase 3	AD, CD, UC, PsA, axSpA
Filgotinib ^{2,3}	JAK1	Phase 3	CD, UC, PsA, lupus, uveitis, Sjogren syndrome
Peficitinib ^{3,5}	JAK3/1	Under development in Asia	N/A
Decernotinib ^{3,6}	JAK3	Discontinued	N/A

^aNot a comprehensive list. AD = atopic dermatitis; AS = ankylosing spondylitis; CD = Crohn's disease; GCA = giant cell arteritis; UC = ulcerative colitis. 1. PI for tofacitinib. http://labeling.pfizer.com/showlabeling.aspx?id=959 2018. 2. https://www.clinicaltrials.gov/. 3. Winthrop K. *Nat Rev Rheumatol*. 2017;13:234-243. 4. PI for baricitinib. pi.lilly.com/us/olumiant-uspi.pdf. 2018. 5. https://www.thepharmaletter.com/in-brief/brief-after-japan-filing-of-ra-drug-astellas-sets-sights-on-other-asian-countries. 6. https://rheumatology.medicinematters.com/rheumatoid-arthritis-/jak-inhibitors/jak-inhibitors-the-next-generation-of-drugs-for-treating-rheumat/12336972.


Jakinibs: JAK Isotype Specificity

Compound	Enzyme assay IC ₅₀ (nM)			Human whole blood IC ₅₀ (nM)				M)		
	JAK1	JAK2	JAK3	TYK2	IL-15 pSTAT 5	IL-6 pSTAT 1	IL-12 pSTAT 4	IFN- alpha pSTAT 3	IL-23 pSTAT 5	CD34+ cells EPO pSTAT 5
Tofacitinib	15.1	77.4	55.0	489	55.8	75.4	409	35.0	229	302
Baricitinib	4.0	6.6	787.0	61.0	259	21.1	149	28.7	81.9	87.8
Filgotinib	363	2,400	>10,0 00	2,600	2,140	918	13,362	1,500	10,123	13,200
Ruxolitinib	6.4	8.8	487.0	30.1	1,850	298	1.090	194	818	677

EPO = erythropoietin.

Winthrop K. Nat Rev Rheumatol. 2017;13:234-243.



Learning Objective

Evaluate clinical trial data for current and emerging small molecule/intracellular signaling targets in the management of patients with RA

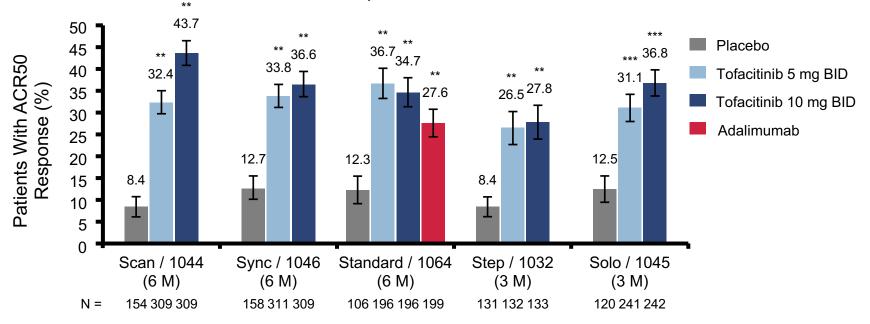
Audience Response

Please rate your level of familiarity with efficacy and safety data for emerging JAK inhibitors in RA.

- A. Minimally familiar
- B. Somewhat familiar
- C. Familiar
- D. Very familiar

Tofacitinib: Phase 3 RA Program^{1,2} 2211 Patient-Years

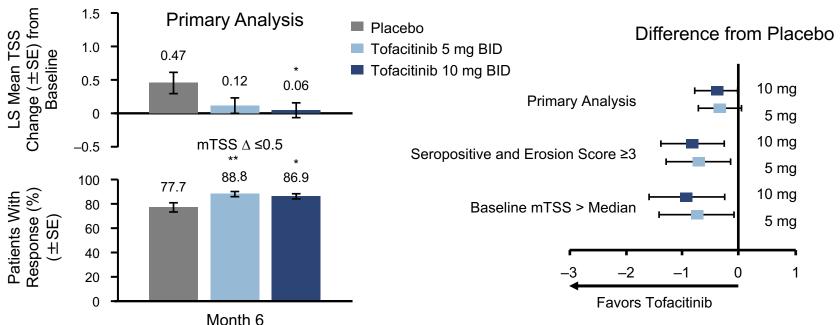
Tofacitinib: Phase 3 Study Designs-DMARD-IRs


		Duration ≥ 1 Y	Duration of 6 Months			
Study N	Study 1044 N = 797	Study 1046 N = 792	Study 1064 N = 717	Study 1032 N = 399	Study 1045 N = 610	
Population	MTX-IR	DMARD-IR	MTX-IR	TNF-IR	DMARD-IR	
Background treatment	MTX	DMARDs	MTX	MTX	None	
Distinguishing feature	X-ray	Background DMARDs	Active control (adalimumab)	TNF failures	Monotherapy	
	"SCAN"	"SYNC"	"STANDARD"	"STEP"	"SOLO"	

^{1.} Lundquist LM, et al. World J Orthop. 2014;5:504-511. 2. Bird P, et al. J Clin Rheumatol. 2018;1-12.

Tofacitinib: Phase 3 Registration^a RCTs and ACR50 Responses

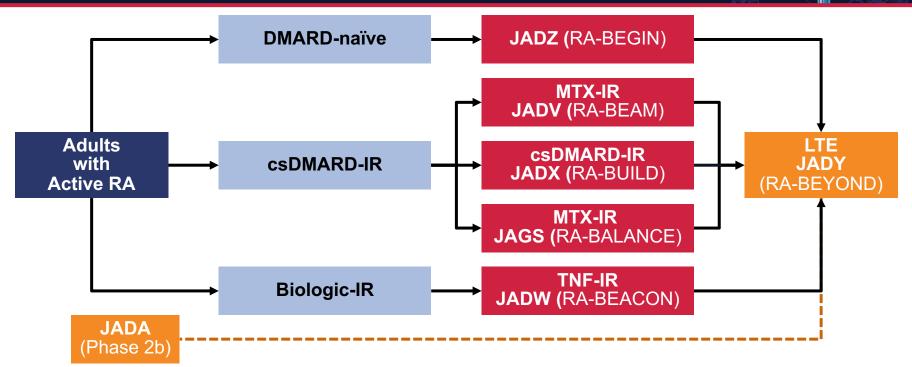
Tofacitinib: ACR50 Response across DMARD-IR Studies



aFDA-approved dose is 5 mg BID or 11 mg XR QD. **p < .001. ***p < .0001.

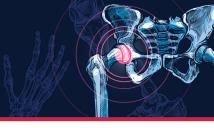
FDA Advisory Committee Meeting. Tofacitinib for the Treatment of Rheumatoid Arthritis. NDA 203214 Briefing Document. May 9, 2012.

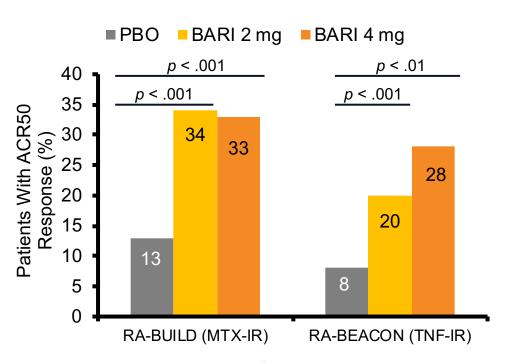
Tofacitinib: Radiographic Outcomes^{a,1,2}

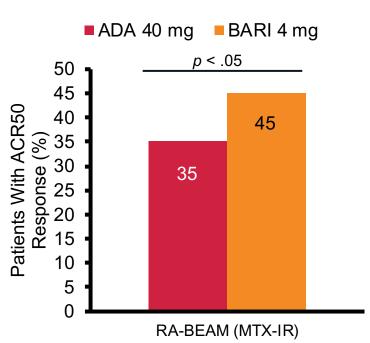

^aFDA-approved dose is 5 mg BID or 11 mg XR QD. * ρ ≤ .05. ** ρ ≤ .01.

SE = standard error; LS = least square; mTSS = modified total Sharp score.

1. van der Heijde D, et al. Arthritis Rheum. 2012;65:559-570. 2. Landewé R, et al. Arthritis Res Ther. 2016;18:212.

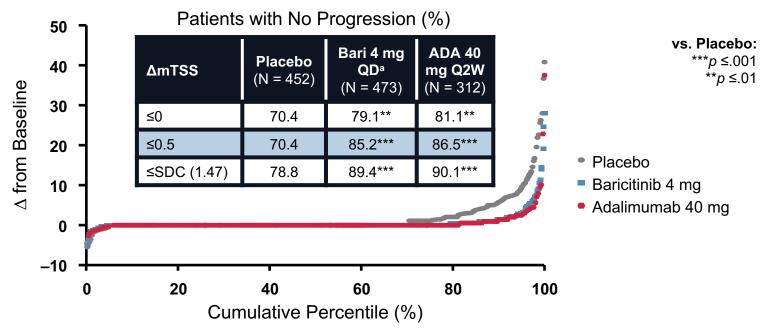

Baricitinib Phase 3 RA Program: 1-4


4214 Patient-Years



LTE = long-term extension. 1. Kuriya B, et al. *Ther Adv Musculoskeletal Dis.* 2017;9(2):37-44. 2. Dougados M, et al. *Ann Rheum Dis.* 2017;76:88-95. 3. Li Z, et al. Presented at: EULAR; 2018. Abstract No. SAT0218. 3. Kubo S, et al. *Exp Rev Clin Immunol.* 2016;12:911-919. 4. https://clinicaltrials.gov/ct2/show/NCT01885078.

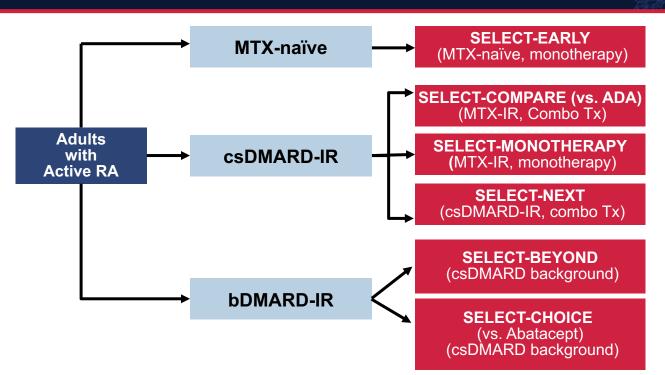
Baricitinib: ACR50 Responses Across DMARD-IR Studies^{a,1,2}



^aFDA-approved dose is 2 mg QD.

1. Kuriya B, et al. Ther Adv Musculoskelet Dis. 2017;9(2):37-44. 2. Taylor PC, et al. N Engl J Med. 2017;376:652-662.

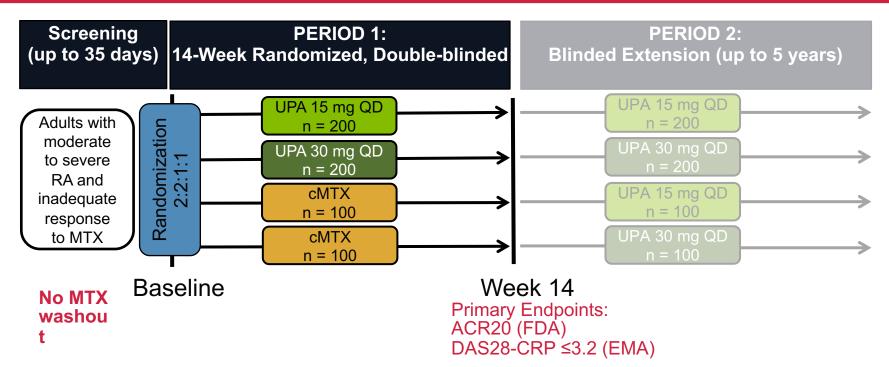
Baricitinib: 52-Week Radiographic Change in MTX-IR Patients



***FDA-approved dose is 2 mg QD**. SDC = smallest detectable change. Taylor PC, et al. *N Engl J Med.* 2017;376:652-662.

Upadacitinib Phase 3 RA Programa

≅5000 Patients¹⁻⁶

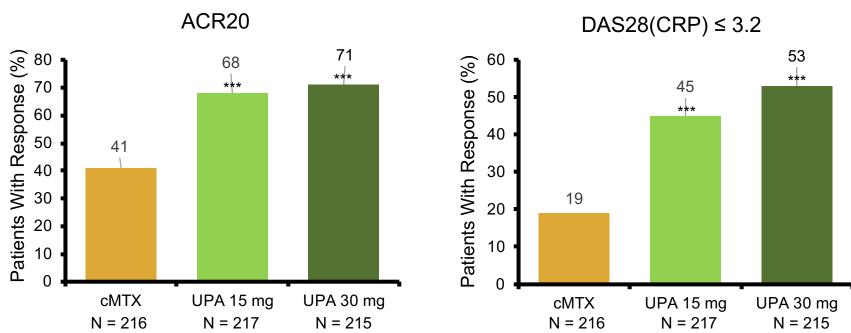

^aInvestigational agent. 1. https://clinicaltrials.gov/ct2/show/NCT02706873. 2. https://clinicaltrials.gov/ct2/show/NCT02629159.

3. https://clinicaltrials.gov/ct2/show/NCT027069515. 4. https://clinicaltrials.gov/ct2/show/NCT02675426.

5. https://clinicaltrials.gov/ct2/show/NCT02706847. 6. https://clinicaltrials.gov/ct2/show/NCT03086343.

SELECT-MONOTHERAPY^a

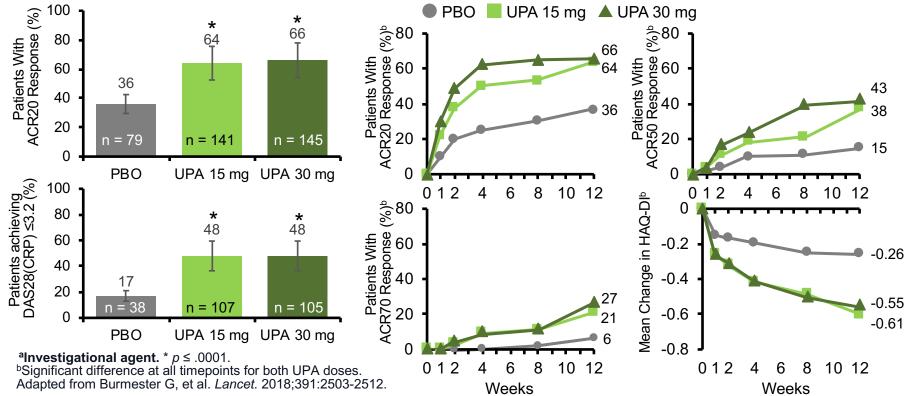
Study Design


^aInvestigational agent.

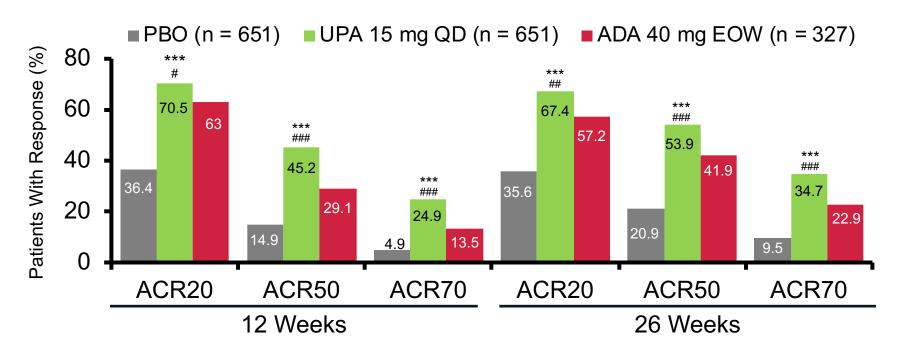
cMTX = continuing MTX as blinded study drug. Smolen J, et al. Presented at: EULAR; 2018. Abstract No. OP0035.

SELECT-MONOTHERAPY^a

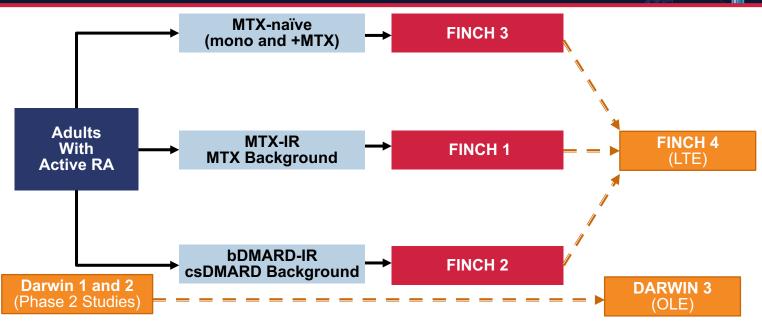
Primary Endpoints at Week 14 (NRI)



^aInvestigational agent. *** p < .001 vs. cMTX. Smolen J, et al. Presented at: EULAR; 2018. Abstract No. OP0035.


Upadacitinib: csDMARD-IR (SELECT-NEXT)^a

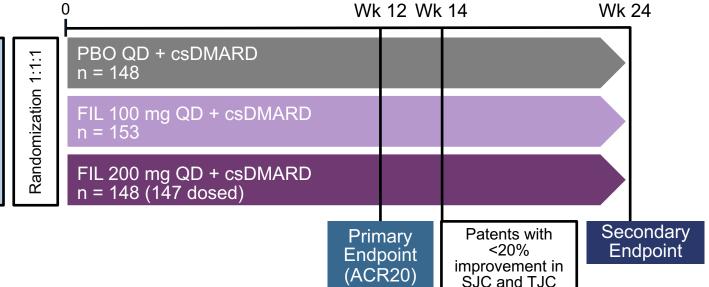
Upadacitinib: SELECT-COMPARE^a



alnvestigational agent. EOW = every other week. ***p < .001 for UPA vs. PBO; *p < .05, **p < .01, ***p < .001 for UPA vs. ADA Fleischmann R, et al. Presented at: ACR/ARHP; 2018. Abstract No. 890.

Filgotinib RA Phase 3 Program^a

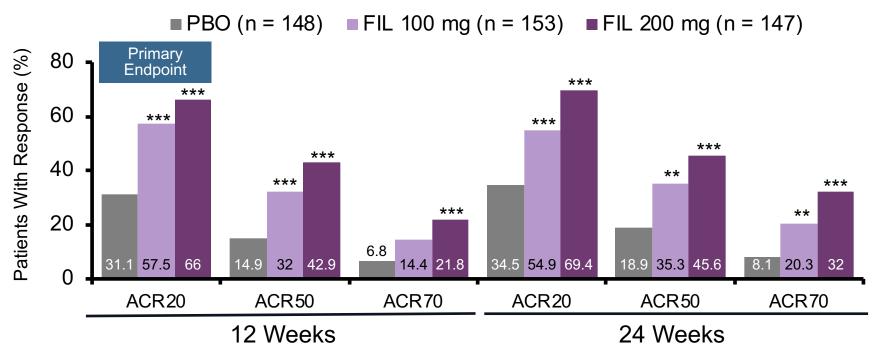
3460 Patients¹⁻⁵


^aInvestigational agent.

- 1. https://www.clinicaltrials.gov/ct2/show/NCT02889796?term=filgotinib&cond=Rheumatoid+Arthritis&rank=5.
- 2. https://www.clinicaltrials.gov/ct2/show/NCT02873936?term=filgotinib&cond=Rheumatoid+Arthritis&rank=3.
- 3. https://www.clinicaltrials.gov/ct2/show/NCT02886728?term=filgotinib&cond=Rheumatoid+Arthritis&rank=4.
- 4. https://www.clinicaltrials.gov/ct2/show/NCT03025308?term=filgotinib&cond=Rheumatoid+Arthritis&rank=2.
- 5. Westhovens R, et al. EULAR; 2018. Abstract No. SAT0200.

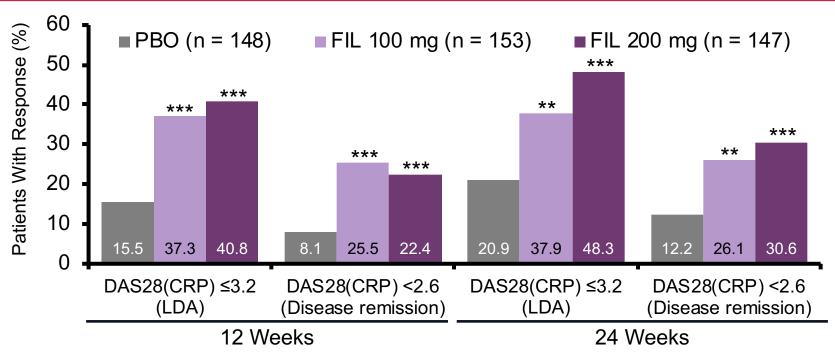
FINCH 2: Study Design

Moderate-tosevere RA despite csDMARD therapy, and inadequate response or intolerance to ≥1 bDMARD

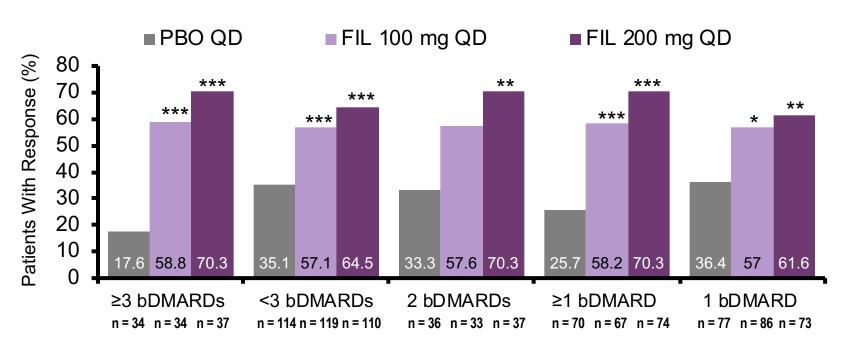


discontinue study drug

Genovese M, et al. Presented at: ACR/ARHP; 2018. Abstract No. L06.

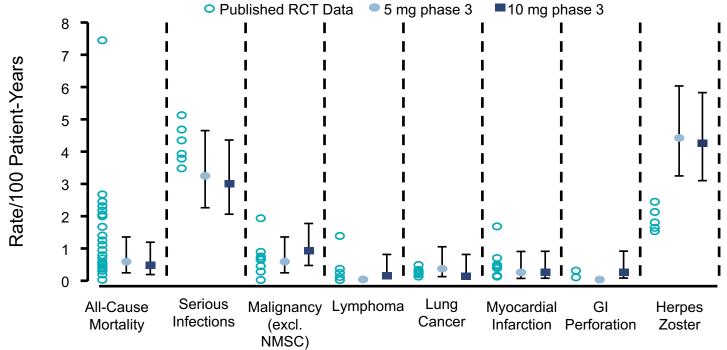

Filgotinib: FINCH 2 12-Week and 24-Week ACR Data^a

^aInvestigational agent. **p < .01, ***p < .001 vs. placebo. Genovese M, et al. Presented at: ACR/ARHP; 2018. Abstract No. L06.


Filgotinib: FINCH 2 12-Week and 24-Week DAS Scores^a

^aInvestigational agent. **p < .01. ***p < .001 vs. placebo. Genovese M, et al. Presented at: ACR/ARHP; 2018. Abstract No. L06.

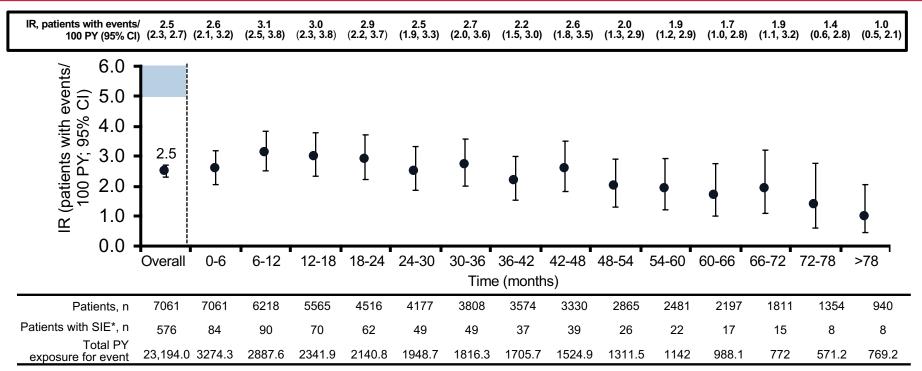
Filgotinib: FINCH 2 12-Week ACR20 Responses by Prior bDMARD Use^a


alnvestigational agent. *p < .05. **p < .01. ***p < .001 vs. placebo. Genovese M, et al. Presented at: ACR/ARHP; 2018. Abstract No. L06.

Jakinib Safety

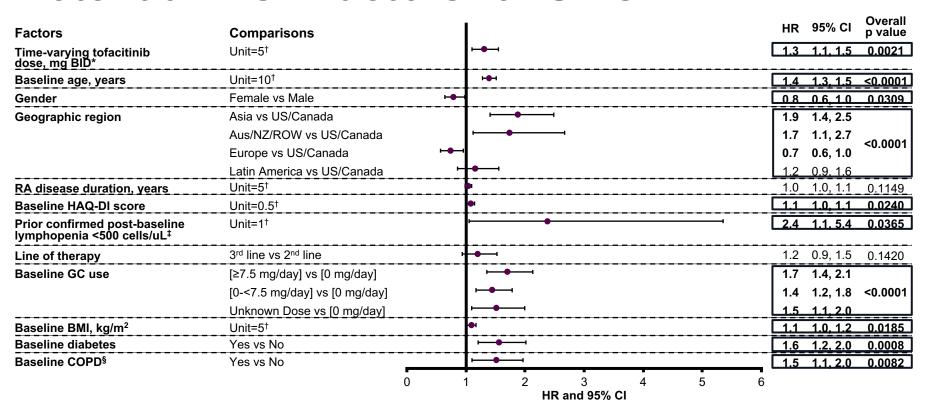
- Serious infectious episodes
- Viral/opportunistic infections: herpes zoster
- Tuberculosis
- Lipids and cardiovascular risk
- Hepatic safety
- GI perforations
- Increased risk of thromboembolic disease?

Safety Profile of Tofacitinib in Phase 3 Studies vs. Clinical Trial Data of TNF Inhibitors and Other Biologic DMARDs^a



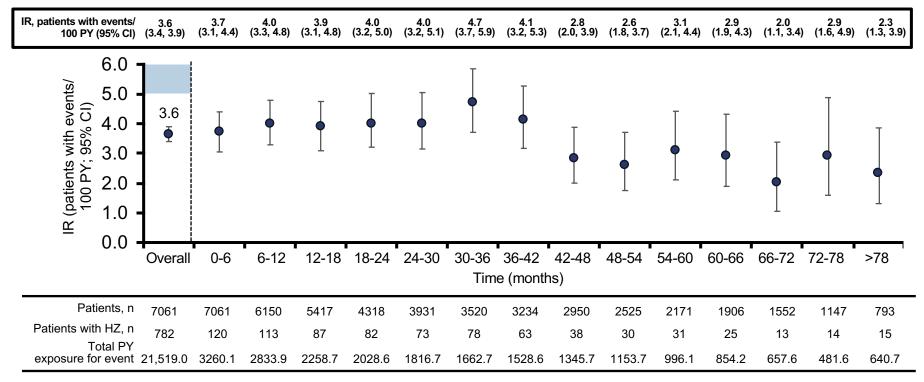
^aFDA-approved dose is 5 mg BID or 11 mg XR QD. NMSC = non-melanoma skin cancer.

FDA Advisory Committee Meeting. Tofacitinib for the Treatment of Rheumatoid Arthritis. NDA 203214 Briefing Document. May 9, 2012.


IRs of SIEs Remained Stable Over Time With Tofacitinib^a

FDA-approved dose is 5 mg BID or 11 mg XR QD. *Requiring hospitalization, or parenteral antimicrobial therapy use, or meeting other SAE criteria. Cohen S, et al. Presented at: ACR/ARHP; 2018. Abstract No. 963.

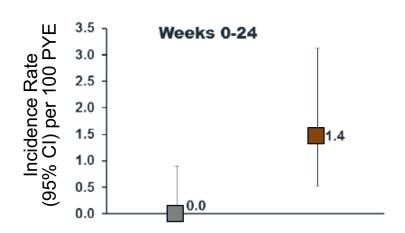
Potential Risk Factors for SIEs


All-level comparison of a factor is boxed if significant; and 2-level comparison is bolded if significant.

Aus. Australia: HR. hazard ratio: NZ. New Zealand: ROW. rest of world

^{*}Determined by the time of first onset of event. If the first onset of event occurred during the index study, the randomized dose in the index study was used. If the first onset of event occurred during the LTE study, average to facitinib dose (5 or 10 mg BID) was used. †In Unit=x, 'x' is the change in the continuous variable corresponding to which the change in hazards is observed. †Based on exposure period before lymphopenia <500 cells/µL vs exposure period after lymphopenia <500 cells/µL. §Medical history and/or complication of COPD

IRs of HZ (Serious and Non-serious) Remained Stable Over Time With Tofacitiniba



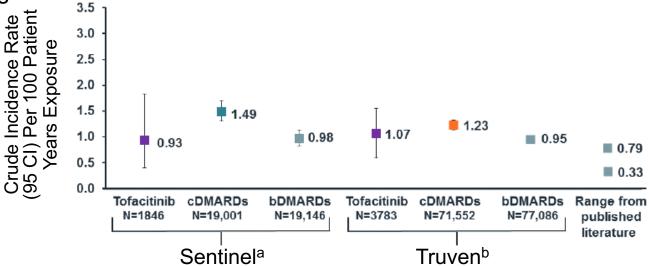
^aFDA-approved dose is 5 mg BID or 11 mg XR QD. Cohen S, et al. Presented at: ACR/ARHP; 2018. Abstract No. 963.

Baricitinib Placebo-Controlled RA RCTs Venous Thromboembolic Events (VTE)

Imbalance in Venous Thromboembolic Events, Placebo-Controlled Period, Weeks 0-24

Treatment	РВО	Bari 4 mg ^a	
Subset	4 mg PC Dataset		
All Patients	1070	997	
With Events	0	6	
Patient Years	406	418	

^aFDA-approved dose is 2 mg QD.


FDA Advisory Committee Meeting. April 23, 2018.

https://www.fda.gov/downloads/advisorycommittees/committeesmeetingmaterials/drugs/arthritisadvisorycommittee/ucm605062.pdf.

VTE Rates in Observational Databases

External databases and literature demonstrate VTE incidence rate in RA patients

^aResults from 5 Sentinel System data partners, offered through the Reagan-Udall Foundation's Innovation in Medical Evidence Development and Surveillance (IMEDS) program. ^bResults from Truven Marketscan database. FDA Advisory Committee Meeting. April 23, 2018.

https://www.fda.gov/downloads/advisorycommittees/committeesmeetingmaterials/drugs/arthritisadvisorycommittee/ucm605062.pdf.

Upadacitinib: SELECT-MONOTHERAPY

AEs of Special Interest

AE, n (%)	cMTX N = 216	UPA 15 mg Mono N = 217	UPA 30 mg Mono N = 215
Infection	57 (26.4)	42 (19.4)	54 (25.1)
-Serious Infection (SI)	1 (0.5)	1 (0.5)	0
-Opportunistic Infection (OI) [‡]	1 (0.5)	0	3 (1.4)
-Herpes Zoster	1 (0.5)	3 (1.4)	6 (2.8)
-Tuberculosis	0	0	0
Hepatic Disorder	4 (1.9)	4 (1.8)	5 (2.3)
Gastrointestinal Perforation	0	0	0
Any Malignancy (including NMSC)	1 (0.5)	2 (0.9)	0
-NMSC	1 (0.5)	0	0
MACE (adjudicated)§	0	1 (0.5)	2 (0.9)
Venous Thromboembolism (adjudicated) ^δ	0	1 (0.5)	0

^aInvestigational agent. [‡]OI: cMTX: Fungal esophagitis; UPA 30 mg: 2 oral candidiasis, 1 oropharyngeal candidiasis §MACE: UPA 15 mg: 1 hemorrhagic stroke due to ruptured aneurysm (fatal); UPA 30 mg: 1 non-fatal MI, 1 non-fatal stroke δVTE: Pulmonary embolism in UPA 15 mg in pt with risk factors (BMI 36 kg/m², estrogen) Smolen J, et al. Presented at: EULAR; 2018. Abstract No. OP0035.

Filgotinib: FINCH 2^a AEs of Interest



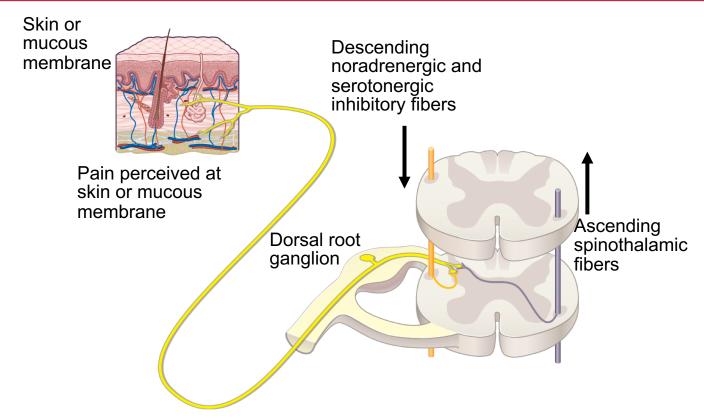
AE, n (%)	PBO n = 148	FIL 100 mg n = 153	FIL 200 mg N = 147
Infection	38 (25.7%)	52 (34%)	53 (36.1%)
-Serious Infection	2 (1.4%)	3 (2%)	1 (0.7%)
-Opportunistic Infection	0	0	0
-Herpes Zoster	0	2 (1.3%)	2 (1.4%)
-Active Tuberculosis	0	0	0
DVT/PE ^b	0	0	1 (0.7%)
MACE (adjudicated)	1 (0.7%)	1 (0.7%)	0
GI Perforation	0	0	0
Any Malignancy (excluding NMSC)	0	0	0
-NMSC	0	0	0

^aInvestigational agent. ^bRetinal vein occlusion.

Genovese M, et al. Presented at: ACR/ARHP; 2018. Abstract No. L06.

Jakinibs: Possible Laboratory Changes^{1,2}

- LFT abnormalities: More prevalent with combination Rx
- Lipid: Increased HDL/LDL; ratio generally unchanged
- Hemoglobin: Reduced if JAK2 activity impacted; rarely clinically significant
- Neutrophils: Reduced; rarely <1000/mm³; presumed part of MOA
- Lymphocytes: Reduced; rarely <500/mm³; dose reduction or discontinuation indicated due to increased risk of SIEs
- Serum creatinine: Small nonsignificant elevations seen


Jakinibs: Laboratory Findings

	Tofacitinib	Baricitinib	Filgotinib	Upadacitinib
Selectivity	JAK1, JAK3	JAK1, JAK2	JAK1	JAK1
Lymphocyte number	↓	No change	No change	\downarrow
NK cell number	\downarrow	↓*	No change	\downarrow
Neutrophil number	\downarrow	\downarrow	\	\downarrow
Hemoglobin level	↑	\downarrow	↑	\downarrow
Platelet count	\downarrow	No change	\downarrow	N/A
Liver transaminase level	↑	↑	↑	↑
CPK level	↑	↑	N/A	↑
HDL level	↑	↑	↑	↑
LDL level	<u></u>	<u></u>	No change	<u> </u>
Creatinine level	<u></u>	<u></u>	<u></u>	<u></u>

^{*}Initial rise followed by a decrease. CPK = creatine phosphokinase. Winthrop K. *Nature Rev Rheum*. 2017.13:234-243.

Herpes Zoster: Viral Replication Results in Ganglionitis

ARTHRITIS & RHEUMATOLOGY Vol. 69, No. 2, February 2017, pp 439-446

DOI 10.1002/art.39855

© 2016, American College of Rheumatology

Herpes Zoster and the Risk of Stroke in Patients With Autoimmune Diseases

Leonard H. Calabrese, ¹ Fenglong Xie, ² Huifeng Yun, ² Kevin L. Winthrop, ³ John W. Baddley, ² Cassandra Calabrese, ¹ and Jeffrey R. Curtis²

¹ Departments of Rheumatic and Immunologic and Infectious Diseases Cleveland Clinic

² Departments of Epidemiology and School of Public Health and Division of Infectious Diseases (JWB) University of Alabama at Birmingham

³ Division of Infectious Diseases Oregon Health and Science University

Varicella Vaccines

	Varicella Virus Vaccine¹	Zoster Vaccine Live ²	Herpes Zoster Subunit Vaccine³
CDC abbreviation	VAR	ZVL	RZV
Vaccine Type	Live	Live	Inactivated; Recombinant
Vaccine Components	1350 PFU VZV	19400 PFU VZV	VZV gE: 50 mcg MPL: 50 mcg QS-21: 50 mcg
Recommended Age	≥ 12 months	≥ 50 years	≥ 50 years
Number of Doses	2	1	2
Schedule	0, 1 month	1 dose	0, 2-6 months
Route	SubQ	SubQ	Intramuscular
Storage	Refrigerator	Freezer	Refrigerator
Diluent	Sterile Water	Sterile Water	AS01 adjuvant

gE = glycoprotein E; PFU = plaque-forming units; MPL = monophosphoryl lipid A; QS-21 = saponin purified from plant extract *Quillaja saponaria* Molina

^{1.} Varivax [package insert]. Merck: Whitehouse Station, NJ. 2017. 2. Zostavax [package insert]. Merck: Whitehouse Station, NJ. 2018.

^{3.} Shingrix [package insert]. GSK: Research Triangle Park, NC. 2017.

Updated ACIP Adult Vaccination Schedule Prevention of HZ and Its Complications

- October 2017 recommendations for use of RZV:1
 - Immunocompetent adults aged ≥ 50 years to prevent HZ and related complications
 - Adults aged ≥ 50 years who previously received ZVL
 - Adults aged ≥ 60 years can receive ZVL or RZV, although RZV is preferred
- 2018 updates to immunization schedule:²
 - 2 doses of RZV, 2-6 months apart to adults aged ≥ 50 years, regardless of past episodes of HZ or receipt of ZVL
 - 2 doses of RZV 2-6 months apart to adults who received ZVL, at least 2 months afterward
 - No current recommendation on the use of RZV in pregnant women or adults with immunocompromising conditions
- No head-to-head studies of ZVL vs. RZV
- CDC still recommends VAR first

Learning Objective

Assess the role of PROs as measures for the value of new therapeutics for RA in addition to safety and efficacy data

Audience Response

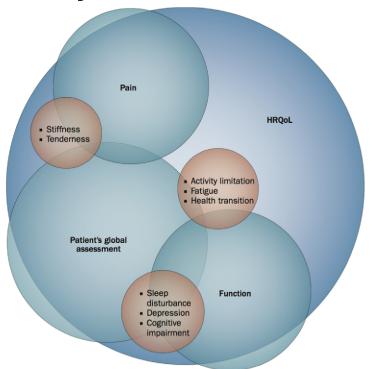
How often do you assess PROs in follow-up visits of patients with RA?

- A. 0-10% of the time
- B. 11-30% of the time
- C. 31-60% of the time
- D. 61-90% of the time

Audience Response

A 36-year-old female with RA has been receiving a TNF inhibitor plus methotrexate for 3 months. At her follow-up appointment, she has a a RAPID3 of 5.9 and complains of fatigue. Upon joint exam, she has 5 tender and 3 swollen joints. She also noted that she does not like receiving injections, and that they are inconvenient for her busy lifestyle. Which of the following would be a reasonable next step in managing her?

- A. Continue the regimen for 1 more month and re-assess
- B. Switch to another biologic with a different MOA
- C. Switch from the TNF inhibitor to a JAK inhibitor
- D. Switch the regimen to monotherapy with a JAK inhibitor


Definition of PRO

- Patient Reported Outcome measures are reports of status of patient's health condition
- PRO data collected directly from questionnaires completed by the patient themselves or via interviews by a clinician or anyone else

>> Outcome is measured in absolute terms e.g., severity of a symptom, sign or state of disease, or as a change from a previous measure

Examples of PRO Measures (PROMs) in RA by Health Domain

	Domain	PROMs
ACR Core measures	Physical function	HAQ, HAQ-II, MDHAQ, AIMS2, PROMIS PF- 10, PF-20, AND PF-CAT
	Pain	VAS, NRS, RAPS, RPS, PROMIS pain intensity and pain interference
	Global assessment	VAS, NRS
Potential core	Fatigue	VAS, NRS, MAF, SF-36 vitality, FACITFS, PMS, BRAF NRS
measure candidates	Stiffness	Morning stiffness duration, severity
carraidates	Flares	Patent reported flare, worsening, and treatment change
Multi- dimensional RA activity measures		PAS, PAS-II, RAPID-3, RADAI, RAID
Others	Sleep	VAS, NRS, AIS, MOS Sleep Measure, Pittsburgh Sleep Diary, WHI Insomnia Rating Scale
	Depression	HADS, PHQ-8/9, BDI, MHI
	Work	WLQ, WALS, SPS-6, EWPS, RA WIS, disability/work status

AIS = Athens Insomnia Scale; BRAF = Bristol Rheumatoid Arthritis Fatigue; EWPS = Endicott Work Productivity Scale; FACITFS = Functional Assessment of Chronic Illness Therapy Fatigue Scale; MAF = Multidimensional Assessment of Fatigue scale; PMS = Profile of Mood States; SPS-6 = 6-item Stanford Presenteeism Scale; WALS = Workplace Activity Limitations Scale; WHI, Women's Health Initiative; WIS = Work Instability Scale; WLQ = Work Limitations Questionnaire. Van Tuyl LH, et al. Rheum Dis Clin North Am. 2016;42:219-237.

Tofacitinib PROs From ORAL STARTa

PROs at Baseline and LSM Changes From Baseline at 24 Months

Month 24 LSM Change From Baseline (SE)

PRO	RO MTX Tofacitinib 5 mg BID N = 261		Tofacitinib 10 mg BID N = 278
Patient Global Assessment	-28.95 (1.94)	-34.41 (1.29)*	-35.79 (1.24)*
Pain	-29.67 (1.94)	-34.79 (1.29)*	-37.62 (1.25)**
HAQ-DI ^b	-0.71 (0.05)	-0.91 (0.03)**	-1.02 (0.03)***
SF-36 PCS	7.72 (0.69)	11.14 (0.46)***	12.49 (0.45)***

^aFDA-approved dose is 5 mg BID or 11 mg XR QD.

Strand V, et al. RMD Open. 2016;2(2):e000308.

^b A change of 0.22 – 0.25 in the HAQ-DI is currently accepted as the MCID in RCTs.

^{*}p < .05, **p < .001, *** p < .0001 vs. MTX.

Baricitinib PROs From RA-BEGIN

Change From Baseline at Week 52 for PROs

PRO Measure (95% CI) ^a	MTX (n = 210)	Baricitinib 4 mg (n = 159) ^c	Baricitinib 4 mg + MTX (n = 215) ^c	
HAQ-DI ^b	-0.71 (-0.79, -0.62)	-0.99 (-1.08, -0.89)***	-1.06 (-1.14, -0.97)***	
PtGA	-29 (-32, -26)	-40 (-44, -37)***	-43 (-46, -39)***	
Patient's Assessment of Pain	-31 (-34, -27)	-40 (-44, -37)***	-43 (-47, -40)***	
MJS Duration, Median Change From Baseline	-40 (-55, -30)	-55 (-60, -40)	-60 (-80, -50)**	

^aData are presented as least-squares mean unless otherwise stated. ^bA change of 0.22 − 0.25 in the HAQ-DI is currently accepted as the MCID in RCTs. ^cFDA-approved dose is 2 mg QD. ** $p \le .01$, *** $p \le .001$ vs. MTX. Schiff M, et al. *Arthritis Res Ther.* 2017;19:208.

Upadacitinib PROs From SELECT-MONOTHERAPY^{a,b}

^bA change of 0.22 – 0.25 in the HAQ-DI is currently accepted as the MCID in RCTs. Smolen J, et al. Presented at: EULAR; 2018. Abstract No. OP0035.

Filgotinib: PROs From FINCH 2^a

12 Weeks		24 Weeks			
	- 400	-		- 111	

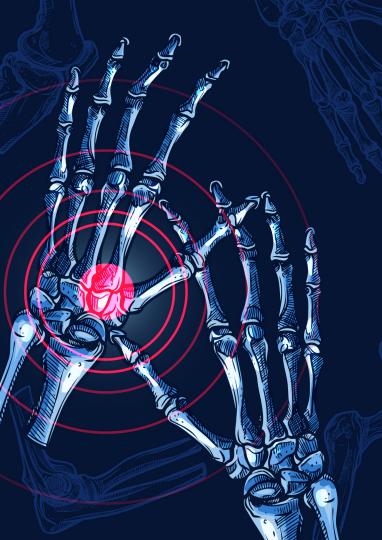
PRO Measure	PBO n = 148	FIL 100 mg n = 153	FIL 200 mg n = 147	PBO n = 148	FIL 100 mg n = 153	FIL 200 mg N = 147
HAQ-DI, mean (SD)	1.40 (0.71)	1.15 (0.71)	1.15 (0.74)	1.22 (0.68)	1.04 (0.71)	0.95 (0.71)
HAQ-DI, mean CFB (SD) ^b	-0.23 (0.55)	-0.48 (0.60)***	-0.55 (0.59)***	-0.42 (0.60)	-0.60 (0.66)**	-0.75 (0.62)***
SF-36 PCS, mean CFB (SD)	3.6 (8.16)	6.8 (8.22)***	7.6 (7.68)***	6.6 (7.95)	9.0 (8.44)**	9.4 (8.23)***
FACIT-Fatigue, mean CFB (SD)	4.5 (10.37)	8.3 (10.80)**	9.6 (11.24)***	7.0 (10.23)	9.8 (10.39)	11.6 (11.67)***

alnvestigational agent. bA change of 0.22 - 0.25 in the HAQ-DI is currently accepted as the MCID in RCTs. p < .05, p < .05,

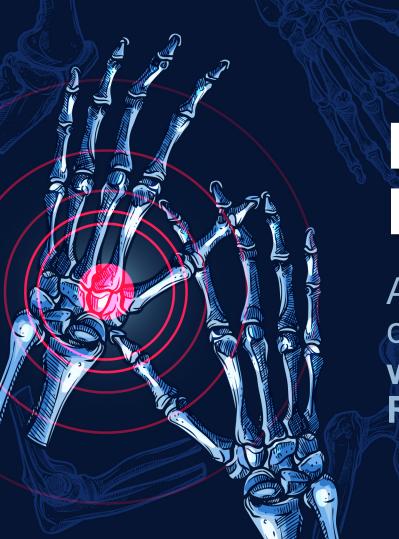
Patient-Provider Discordance Between Global Assessments of Disease Activity in Rheumatoid Arthritis: A Comprehensive Clinical Evaluation

- Discordance correlated with
 - Seronegative status
 - Lack of erosions
 - + fibromyalgia or depression
 - Use of opioids, antidepressants, anxiolytics, or fibromyalgia medications
- Prospective analysis demonstrated
 - Widespread pain
 - Polysymptomatic distress
 - Neuropathic pain
 - Depression
 - No difference in MUS

MUS = musculoskeletal ultrasound. Challa D, et al. *Arthritis Res Ther.* 2017;19:212.


SMART Goals

Specific, Measurable, Attainable, Relevant, Timely


- Jakinibs have similar efficacy to biologic DMARDs and are appropriate treatment options for MTX-IR or biologic DMARD-IR patients with RA
- Data support use in DMARD-naïve patients with RA but present use limited due to insurers/governmental authorities
- Safety issues well delineated and similar to biologic DMARDS except for an increased risk for herpes zoster
- Differences in JAK specificity exist in preclinical evaluation but data to date suggest limited impact on clinical response to individual Jakinibs

Get Your Credit

To receive credit, please complete the demographics survey upon login and the evaluation during Q&A on your mobile device. You will receive an email with your certificate after the event.

Downloadable Resources

Available for your convenience at www.cmeoutfitters.com/RheumCMEresources