10TH ANNUAL CHAIR SUMMIT
Master Class for Neuroscience Professional Development

November 16 - 18, 2017 | Hotel Monteleone | New Orleans, LA

Provided by CME Outfitters

#CHAIR2017
Treatment Targets in Alzheimer’s Disease

W. Vaughn McCall, MD, MS
Professor and Case Distinguished University Chairman
Department of Psychiatry and Health Behavior
Medical College of Georgia, Augusta University
Augusta, GA
Disclosures

- **Research/Grants:** MECTA Corporation; Merck & Co. Inc.

- **Consultant:** Multiple Energy Technologies; Anthem Insurance
Explore treatment targets in AD and agents in development that target these pathways.
Mechanisms of Action of Agents for AD in Phase 3 Development

Agents in Development for AD

<table>
<thead>
<tr>
<th>Compound</th>
<th>Target</th>
<th>Type</th>
<th>MOA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adacanumab</td>
<td>Aβ</td>
<td>Fully human IgG1mAb</td>
<td>Passive immunotherapy</td>
</tr>
<tr>
<td>Crenezumab</td>
<td>Aβ</td>
<td>Humanized mAb</td>
<td>Passive immunotherapy</td>
</tr>
<tr>
<td>Gantenerumab</td>
<td>Aβ</td>
<td>Humanized mAb</td>
<td>Passive immunotherapy</td>
</tr>
<tr>
<td>Solanezumab</td>
<td>Aβ</td>
<td>Humanized mAb</td>
<td>Passive immunotherapy</td>
</tr>
<tr>
<td>ALZT-OP1</td>
<td>Aβ</td>
<td>Small molecule</td>
<td>Anti-inflammatory</td>
</tr>
<tr>
<td>AZD3293</td>
<td>Aβ</td>
<td>Small molecule</td>
<td>BACE inhibitor</td>
</tr>
<tr>
<td>CNP520</td>
<td>Aβ</td>
<td>Small molecule</td>
<td>BACE inhibitor</td>
</tr>
</tbody>
</table>

Agents in Development for AD (cont’d)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Target</th>
<th>Type</th>
<th>MOA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elenbecestat</td>
<td>Aβ</td>
<td>Small molecule</td>
<td>BACE inhibitor</td>
</tr>
<tr>
<td>Lananbecestat</td>
<td>Aβ</td>
<td>Small molecule</td>
<td>BACE inhibitor</td>
</tr>
<tr>
<td>Verubecestat</td>
<td>Aβ</td>
<td>Small molecule</td>
<td>BACE inhibitor</td>
</tr>
<tr>
<td>AGB101</td>
<td>Aβ</td>
<td>Small molecule</td>
<td>Anti-epileptic drug</td>
</tr>
<tr>
<td>Azeliragon</td>
<td>Aβ</td>
<td>Small molecule</td>
<td>RAGE inhibitor</td>
</tr>
<tr>
<td>RVT-101</td>
<td>Other</td>
<td>Small molecule</td>
<td>5HT$_6$ receptor antagonist</td>
</tr>
<tr>
<td>LMTM</td>
<td>Tau</td>
<td>Small molecule</td>
<td>Tau aggregation inhibitor</td>
</tr>
</tbody>
</table>

LMTM = Leuco-methylthioninium, RAGE = receptor for advanced glycation end products.
Proposed Biology of AD: Amyloid Cascade

Proposed Biology of AD: Downstream Pathophysiology

Combined EXPEDITION 1 and 2 Data for Solanezumab in Mild and Moderate AD

Pooled data from EXPEDITION 1 and 2 show less decline from baseline in ADAD-Cog scores

MODELED MEAN GROUP DIFFERENCE (95% CI): 1.141 (0.35, 2.47)
P = 0.009

Placebo (n = 663)
Solanezumab (n = 659)

Worsening

ADAS-Cog = Alzheimer’s Disease Assessment Scale-Cognition.
EXPEDITION 3

● Randomized, double-blind, placebo-controlled, phase 3, 80-week trial + open label extension

● 2129 patients with mild AD
 - Aged 55 to 90 years
 - Probable AD
 - Amyloid positive
 - MMSE score 20 to 26

● Intervention
 - Solanezumab 400 mg IV q4w OR Placebo

● Patients treated with solanezumab did not experience a statistically significant slowing in cognitive decline compared with patients treated with placebo ($p = 0.095$), as measured by the ADAS-cog14

MMSE = mini mental state exam.
PRIME CDB-SB Data for Aducanumab

- Change from baseline on the CDR-SB
 - Demonstrated dose-dependent slowing of clinical progression with aducanumab treatment at one year
 - Dose-response, $p < 0.05$, with the greatest slowing for 10 mg kg$^{-1}$ ($p < 0.05$ versus placebo)

CDR-SB = clinical dementia rating scale-sum of boxes.
PRIME Study Design and Results

- Randomized, double-blind, placebo-controlled, phase 1b trial

- Participants
 - 165 adults
 - Aged 50 to 90 years
 - Mild/prodromal AD

- Intervention, q4W for 1 year
 - Fixed dose of IV aducanumab
 - 1 mg/kg
 - 3 mg/kg
 - 6 mg/kg
 - 10 mg/kg
 - Placebo

- Results
 - Clinical assessments were exploratory as the study was not powered to detect clinical change
 - Aducanumab penetrates the brain and decreases Aβ in a time- and dose dependent manner
 - Aducanumab-treated patients with had decreased SUVR scores after 1 year of treatment experienced a stabilization of clinical decline on both CDR-SB and MMSE scores
 - Patients with a smaller or no decrease experienced clinical decline similar to patients receiving placebo

SUVR = standardized uptake value ratio.
PRIME: 12-Month Interim Analysis of Titration Dosing

- Added 31 APOE-ε4 carriers
- Randomized to placebo or titrated aducanumab: 1mg/kg for 2 doses, 3 mg/kg for 4 doses, 6 mg/kg for 5 doses, and 10 mg/kg thereafter
- Week 52 average expected dose: 5.3 mg/kg
- Results
 - Significant decreases in brain Aβ with titrated aducanumab in mean PET SUVR ($p < .001$)
 - Aducanumab: -0.171
 - Placebo: 0.014
 - Similar results for titration-dose cohort and fixed-dose cohort in slowing of clinical decline (CDR-SB and MMSE)
 - ARIA incidence lower with titrated dosing vs higher fixed dosing of aducanumab in APOE-ε4

LMTM in Mild AD

- Double-blind, placebo-controlled, phase 3, 15-month trial
- Patients (N = 891) with mild-to-moderate AD randomized to
 - LMTM: 75 mg or 125 mg BID
 - Control: LMTM, 4 mg BID

- Co-primary endpoints assessed at week 65 in ITT population
 - ADAS-COG
 - ADCS-ADL

- Results
 - Primary analysis was negative
 - No benefit of LMTM as add-on treatment for patients with mild-to-moderate AD was observed

Drugs Recently Granted Fast-Track Approval

- **ALZ-801**
 - Optimized prodrug of tramiprosate
 - Phase 3 program will focus initially on a genetically defined group of high-risk patients (APOE4/4 homozygote)

- **CT1812**
 - First in class, orally administered small molecule
 - Inhibits binding of beta amyloid (Aβ) oligomers to neuronal receptors and facilitates clearance of Aβ oligomers into the cerebrospinal fluid
 - Recently completed Phase 1b/2 in patients with mild-to-moderate AD
Call to Action

● Be aware of emerging agents for AD and their mechanisms of action
● Be up-to-date on evidence regarding patient populations and efficacy of agents in clinical trials
Questions & Answers

Don’t forget to fill out your evaluations to collect your credit.