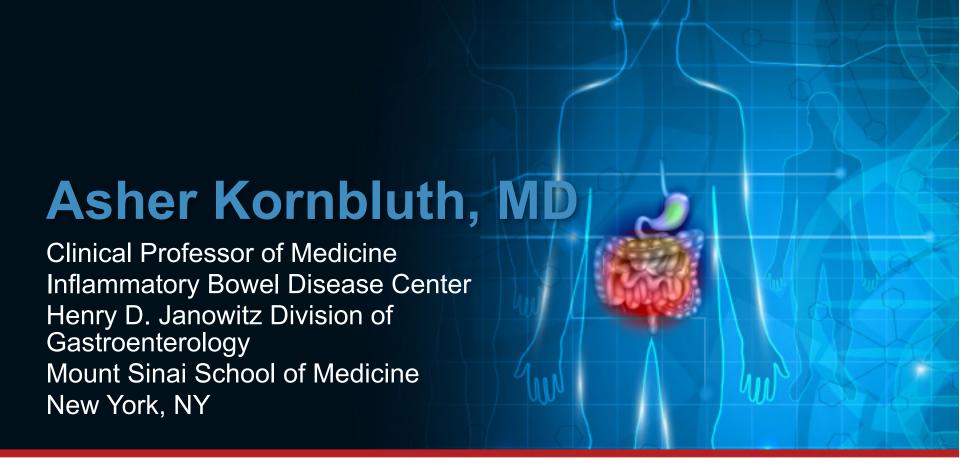
Deep Remission

Top-Down Treatment Strategies and Real-World Data in Patients with UC: An Interactive and Innovative Case Series

Sunday, May 7, 2017

6:00 PM - 6:30 PM Buffet; 6:30 PM - 8:00 PM Presentation Sheraton Grand, Chicago Ballroom 8-10


This program is not affiliated with Digestive Disease Week[®].

Maria T. Abreu, MD Disclosures

- Speakers Bureau: AbbVie Inc.; Imedex
- Consultant: Eli Lilly & Company; Focus Medical Communications; Janssen Pharmaceuticals, Inc.; Pfizer Inc.; Premetheus Laboratories Inc.; Takeda Pharmaceuticals U.S.A., Inc.; Theravance Biopharma US, Inc.; UCB, Inc.
- Advisory Board: AbbVie Inc.; Boehringer Ingelheim Pharmaceuticals, Inc.; Celgene Corporation; Roche Pharmaceuticals; Shire

Arthur A. Kornbluth, MD Disclosures

- Research/Grants: AbbVie Inc.; Bristol Myers Squibb Company; Janssen Pharmaceuticals, Inc.
- Speakers Bureau: AbbVie Inc.; Janssen Pharmaceuticals, Inc.; Millennium Pharmaceuticals, Inc./Takeda Pharmaceutical Company Limited; Prometheus Laboratories, Inc.; Santarus, Inc./Salix Pharmaceuticals
- Advisory Board: AbbVie Inc.; Janssen Pharmaceuticals, Inc.; Millennium Pharmaceuticals, Inc./Takeda Pharmaceutical Company Limited; Prometheus Laboratories Inc.

Miguel Regueiro, MD, FACP, FACG, AGAF

Professor of Medicine, Professor of Clinical & Translational Science
University of Pittsburgh School of Medicine
Associate Chief, Education
Division of Gastroenterology, Hepatology, & Nutrition
Clinical Medical Director of Inflammatory Bowel Disease
Senior Medical Lead of Specialty Medical Homes
University of Pittsburgh Medical Center
Pittsburgh, PA

Miguel Regueiro, MD, FACP, FACG, AGAF Disclosures

 Consultant: AbbVie Inc.; Janssen Pharmaceuticals, Inc.; Pfizer Inc.; Takeda Pharmaceuticals U.S.A., Inc.; UCB, Inc.

Learning Objective

Differentiate between disease activity and disease severity to drive treatment decisions in patients with ulcerative colitis (UC).

Learning 2 Objective 2

Apply the unique risk/benefit profiles of different biologic therapies when making treatment decisions based on individual prognosis and severity of disease.

Learning 3 Objective 3

Utilize data from real-world studies on the use and effectiveness of biologic therapy for UC to initiate early, effective treatment for patients with UC.

Case 1

- 21 year-old young man with ulcerative colitis diagnosed last year
- He needed steroids at presentation and again 6 months later
- He is on mesalamine 4.8gm a day but often forgets to take it
- He is now flaring with 6 bowel movements (BMs) a day with blood, 2 at night and leaving class because of urgency

Case 1 (cont):

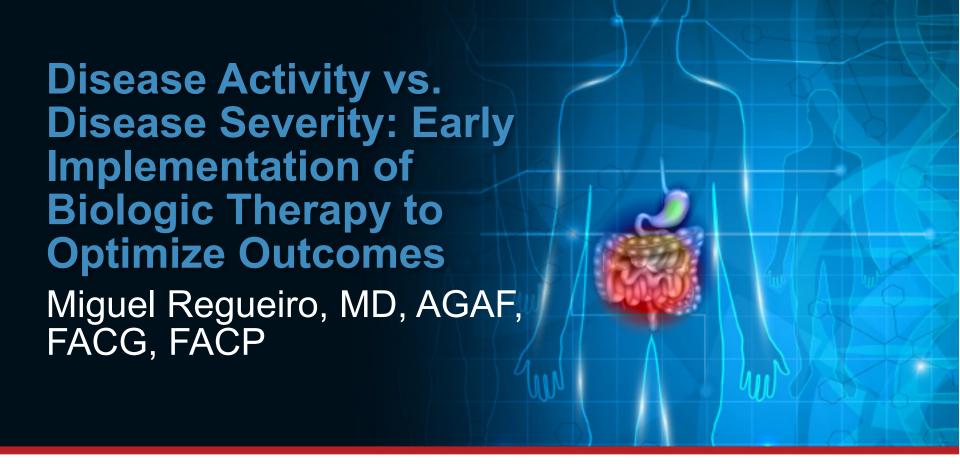
- His colonoscopy shows Mayo 2 to splenic flexure and a cecal patch
- C. diff is negative
- He starts prednisone 40 mg
- 2 weeks later he is down to 4 BM a day and less urgency
- EBV IgG is negative

Colonoscopy Pictures

Cecum

Ascending Colon

Transverse Colon


Descending Colon

Sigmoid Colon

Rectum

AGA Ulcerative Colitis (UC) Care Pathway

- Risk assessment of UC
 - Inflammation
 - Comorbidities
 - Colectomy risk
- Initial therapy
- Exacerbation treatment options
- Clinical Decision Support tool

AGA Clinical Pathway for Ulcerative Colitis: Characterizing Colectomy Risk (Disease Severity)

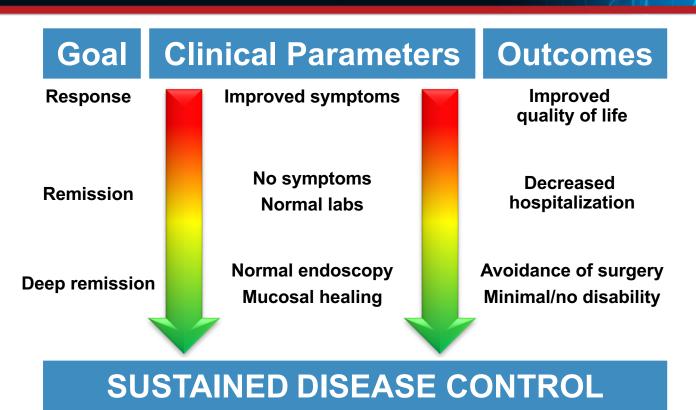
Low Risk		High Risk
> 40 years	Age of diagnosis	< 40 years
Limited	Anatomic involvement	Extensive
Elevated	CRP and ESR at diagnosis	High
No	Steroids required	Yes
Mild	Ulcers • Deep	
No	C difficile infection • Yes	
No	History of hospitalization	Yes
No	CMV infection	Yes

Dassopoulos T, et al. Gastroenterology. 2015;149(1):238-245.

Case 2

- 34 year old female recently quit cigarette smoking with 2 months of symptoms
- 10-15 bloody BM's, rectal urgency, tenesmus
- Hgb 10.8, stool complaints/C.diff negative
- Colonoscopy shows moderately active pan-ulcerative colitis

Definition of Mucosal Healing

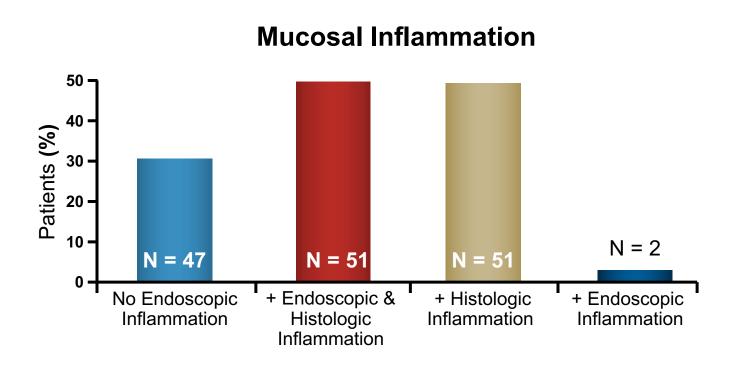


 "Restoration of normal mucosal appearance by endoscopy of a previously inflamed region and the complete absence of ulceration, and macroscopic and histological signs of inflammation."

Ulcerative Colitis: Treat to Mucosal Healing or Symptoms?

- Better correlation of symptoms to mucosal inflammation in UC than CD
 - Rectum is involved
 - Most pts have bleeding, diarrhea, tenesmus
- Difficulty with UC management when there is incomplete mucosal healing
 - Decrease in mucosal inflammation often leads to decrease in symptoms

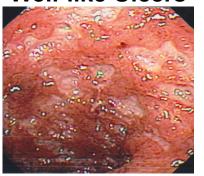
Evolving Clinical Endpoints in UC: Sustained Deep Remission



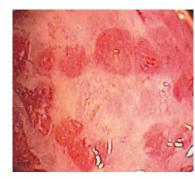
Challenges to Current Clinical Endpoints in UC

- Symptoms may be nonspecific
 - Do not correlate to endoscopic findings of "healing" in clinical trials
 - Do not delineate extent of disease
 - Patients live with active disease!
- Endoscopy is invasive, expensive
- Symptoms may lag behind the development of active inflammation

The Majority of IBD Patients in Clinical Remission Have Mucosal Inflammation


Baars JE, et al. *Inflamm Bowel Dis*. 2012;18(9):1634-1640.

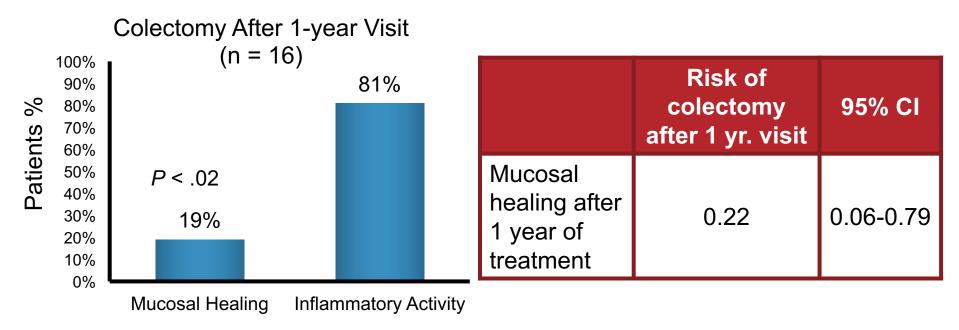
Predictors of Colectomy in Severe Colitis: Poor Prognostic Endoscopic features



Well-like Ulcers


Extensive Loss of Mucosal Layer

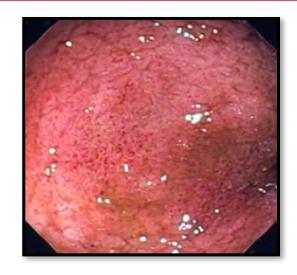
Large Mucosal Abrasions


Endoscopic Severity of Disease Correlates With Colectomy

Carbonnel F, et al. *Dig Dis Sci*. 1994;39:1550-1557.

Mucosal Healing at 1-Year Is Associated With Lower Rate of Colectomy Independent of Symptoms

Frøslie KF, et al. Gastroenterology. 2007;133:412-422.


Back to Case 2 – Next Steps

- Despite prednisone and mesalamine, the patient's symptoms progress
- Severe n/v on azathioprine
 - now severe pan-UC

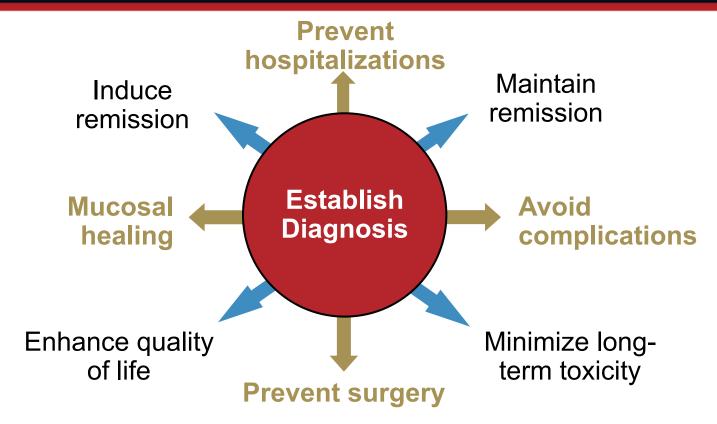
Back to the Case

- Patient on infliximab; has occasional diarrhea, no bleeding and feels well
- Repeat colonoscopy: significant improvement but slight mucosal and histologic inflammation, is this ok????

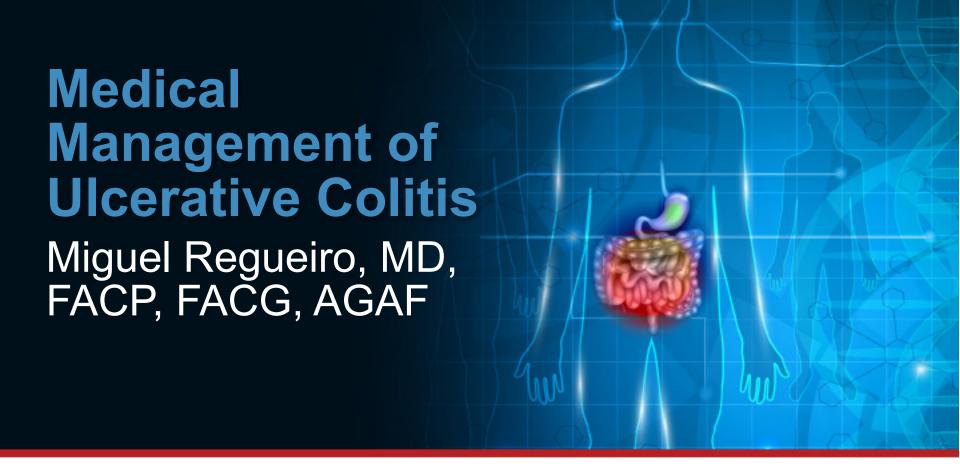
Historical Management Strategies for IBD Are Flawed

- Not disease-modifying: prior medical therapies have limited durable effect
- Decisions are based on symptom control or are made after development of complications
- Adjustments to management are delayed and allow progression of disease
 - Symptoms occur after activation of disease

Why Should We Be Moving Toward Endoscopic Endpoints for Management of IBD?

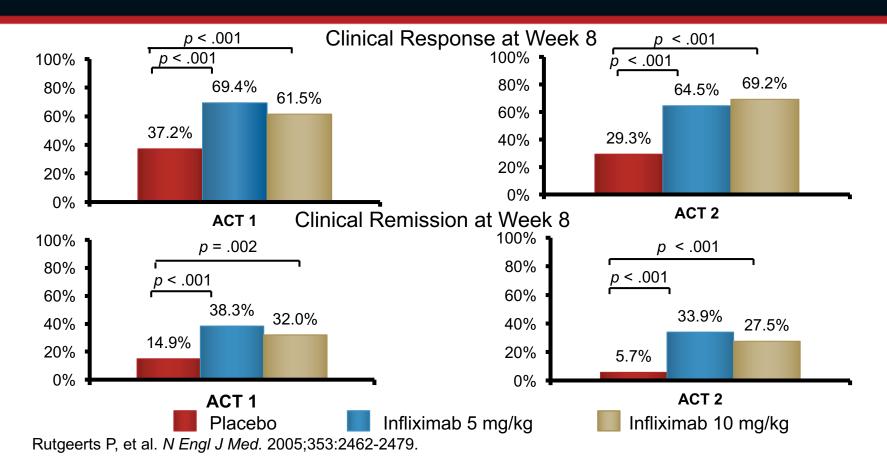

- Seeing is believing
- Symptoms are nonspecific
 - Irritable bowel syndrome, infection, obstruction
- Endoscopic mucosal healing is associated with improved short- and long-term outcomes
 - Durable remission
 - Reduced rates of hospitalization and surgery
 - Possibly less cancer/dysplasia (evidence is for histology)

Treat to Target Rheumatology: Are We Ready to Apply it to IBD?

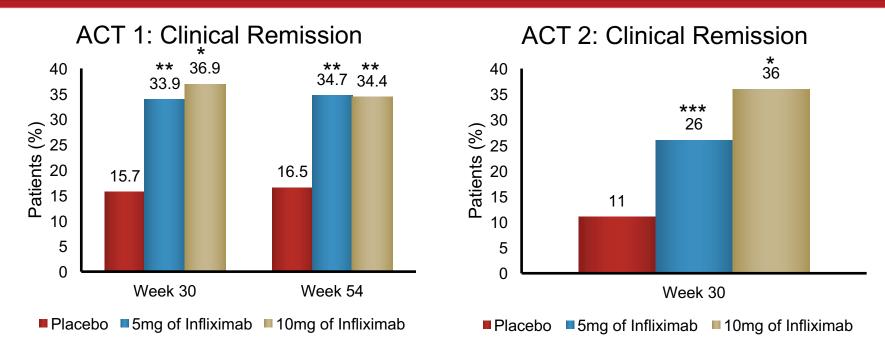

- Shared decision-making between rheumatoid arthritis (RA) patient and MD
- Primary goal: maximize HQROL
 - Control symptoms
 - Prevent progressive structural damage
 - Normalize function and social participation
- Abrogation of inflammation is the most important way to achieve goals
- Treat-to-target by measuring disease activity and adjusting therapy accordingly optimizes outcomes in RA

Goals of Therapy for UC

Kornbluth A, et al. Am J Gastroenterol. 2010;105(3):501-523.

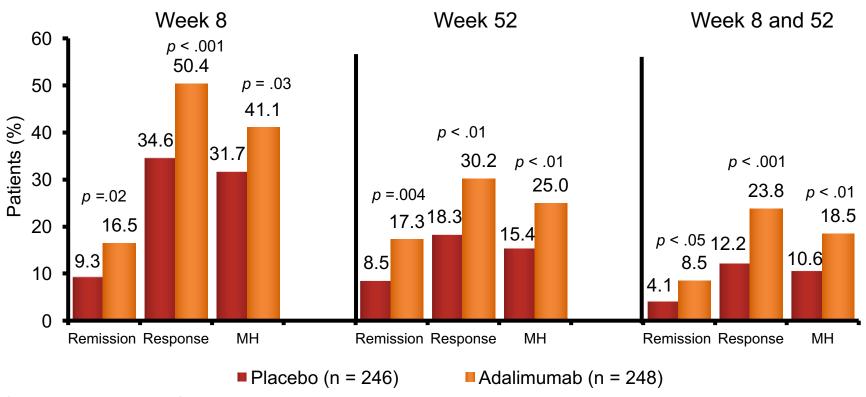

Approved Biologic Agents for UC

	Mechanism	Induction of Clinical Response and Remission	Warnings/Precautions	
Infliximab	Anti-TNF	ACT-1 ¹	Serious infections, opportunistic infections, melanoma risk (annual skin	
Adalimumab	Anti-TNF	ULTRA-1 ²	exam recommended). Need to test for TB and HBV prior to initiation of therapy. (See prescribing information for full listing)	
Golimumab	Anti-TNF	PURSUIT-SC ³		
Vedolizumab	Selective α4β7 integrin antagonist	GEMINI-I ⁴	Nasopharyngitis, upper respiratory and nasal infections, headache, nausea (See prescribing information for full listing)	

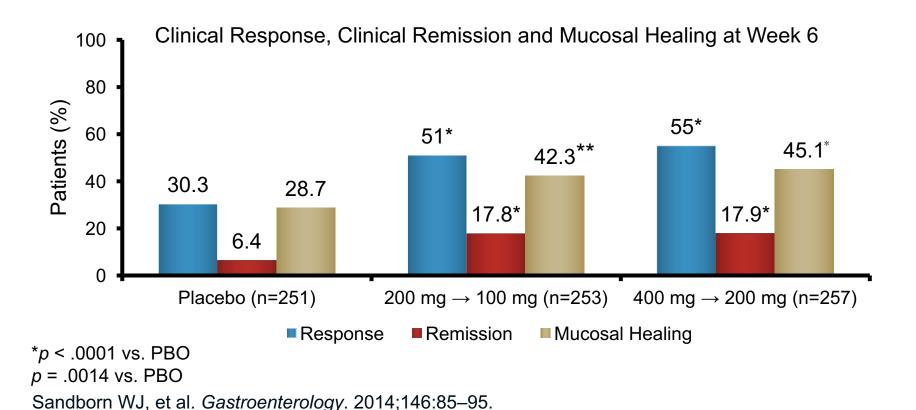

¹Rutgeerts P, et al. N Engl J Med. 2005;353(23):2462-2476; ²Sandborn WJ, et al. Gastroenterology. 2012;142(2):257-265.;

³Sandborn WJ, et al. Gastroenterology. 2014;146(1):96-109; ⁴Feagan BG, et al. N Engl J Med. 2013;369(8):699-710.

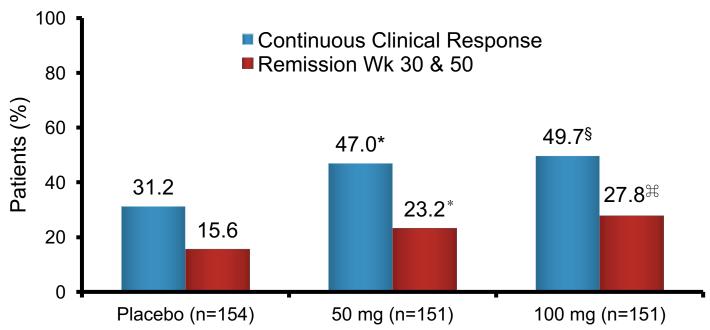
Infliximab for Moderate to Severe UC: ACT 1 & 2


Infliximab for Maintenance of Moderate to Severe UC: ACT 1 & 2

^{*}p < .001 vs. placebo (PBO) ; **p = .001 vs. PBO; ***p = .003 vs. PBO

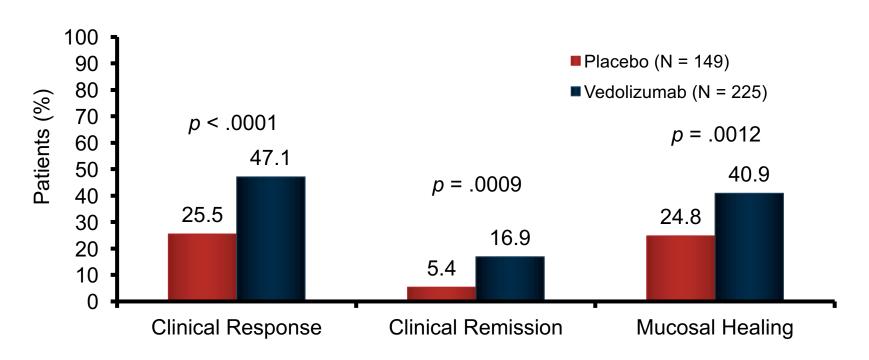

Rutgeerts P, et al. N Engl J Med. 2005;353:2462-2479.

Adalimumab in UC: ULTRA 2 Week 8 and 52 Results

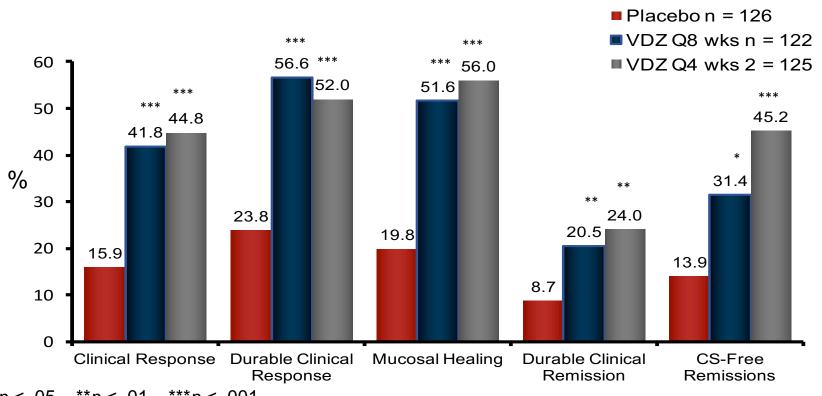


Sandborn WJ, et al. Gastroenterology. 2012;142:257-265.

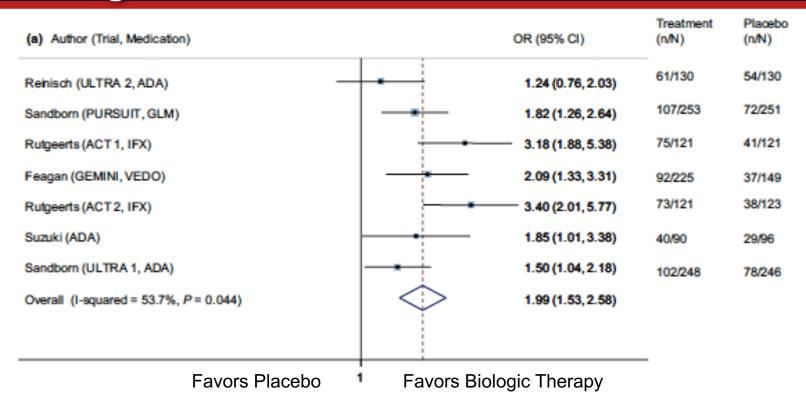
PURSUIT: Golimumab for the Induction of Moderate to Severe UC


PURSUIT: Golimumab for the Maintenance of Moderate to Severe UC

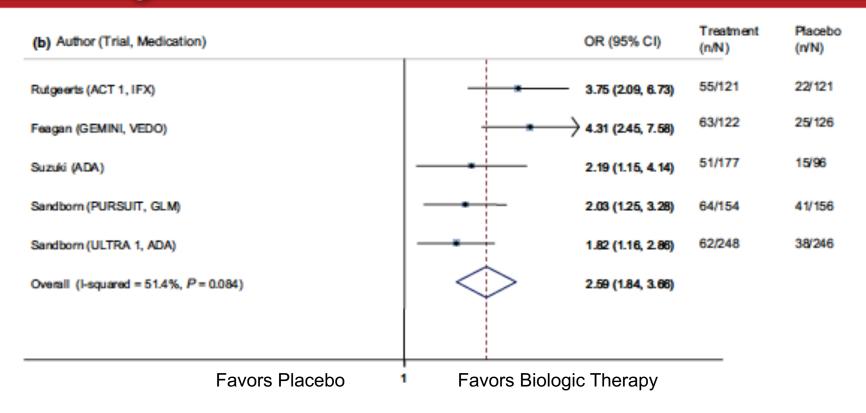
*p = .01 vs placebo \$p < .001 vs. placebo #p = .004 vs. placebo


Sandborn WJ, et al. Gastroenterology. 2014;146:96-109.

GEMINI I:Vedolizumab in UC Efficacy at week 6

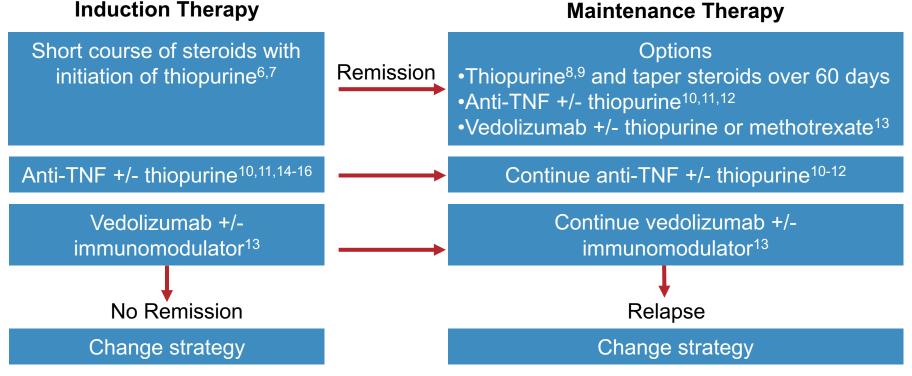

Feagan BG, et al. N Engl J Med. 2013;369:699-710.

GEMINI I: Vedolizumab in UC Primary and Secondary Outcomes Through 52 Weeks, Maintenance ITT Population


*p < .05 **p < .01 ***p < .001 Feagan BG, et al. *N Engl J Med.* 2013;369:699-710.

Effectiveness of Biologics in Attaining Mucosal Healing in UC: Induction Trials

Cholapranee A, et al. Aliment Pharmacol Ther. 2017.45(10):1291-1302.


Effectiveness of Biologics in Attaining Mucosal Healing in UC: Maintenance Trials

Cholapranee A, et al. Aliment Pharmacol Ther. 2017.45(10):1291-1302.

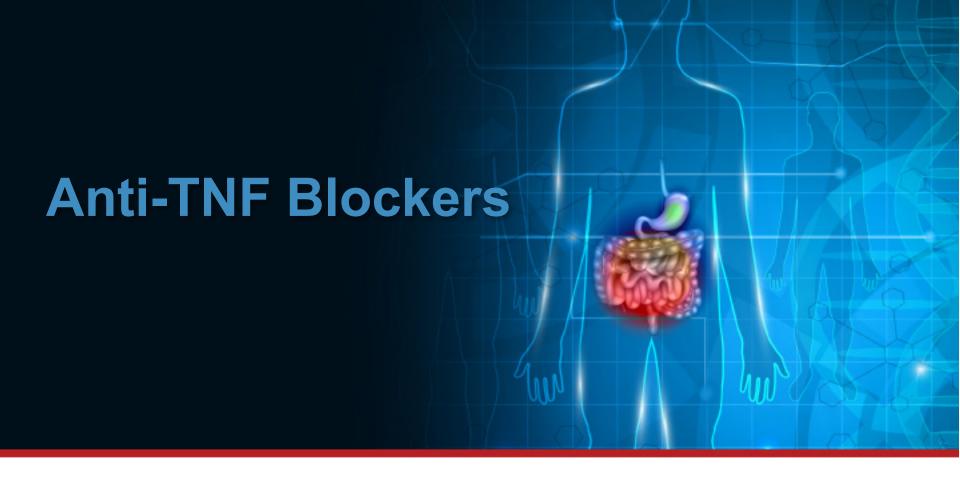
Induction and Maintenance Therapy in High Risk UC Patients

Inductive and Maintenance Therapy (High-Risk, Outpatient)

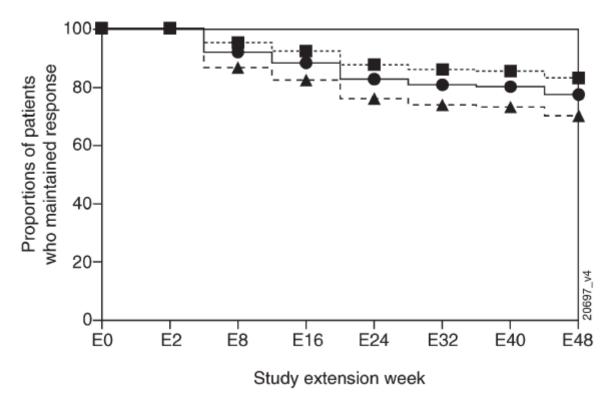
Dassopoulos T, et al. *Gastroenterology*. 2015;149(1):238-245. See supplemental listing for additional references.

Summary

- Anti-TNFs and vedolizumab are effective for induction and maintenance of remission in patients with moderate to severe UC.
- Anti-TNFs and vedolizumab are effective for mucosal healing in patients with moderate to severe UC.
- Earlier use of biologics in moderate to severe UC may improve outcomes.
- Surgery is not a failure of treatment; it is sometimes a necessary component of the treatment of UC.

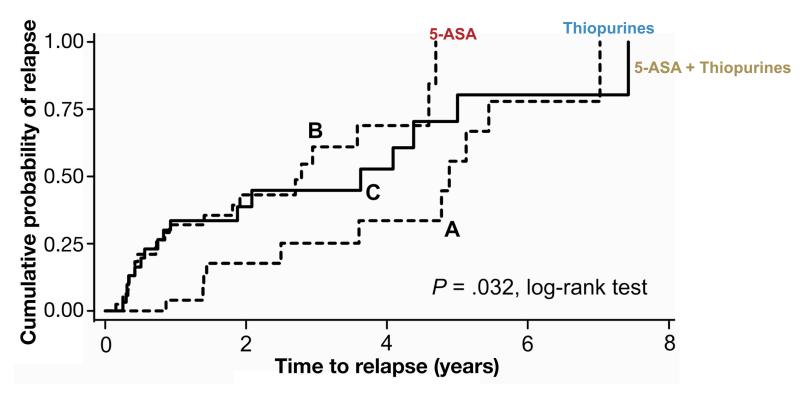


Predictors of IBD-Related ED Visits, Hospitalizations, and High Costs

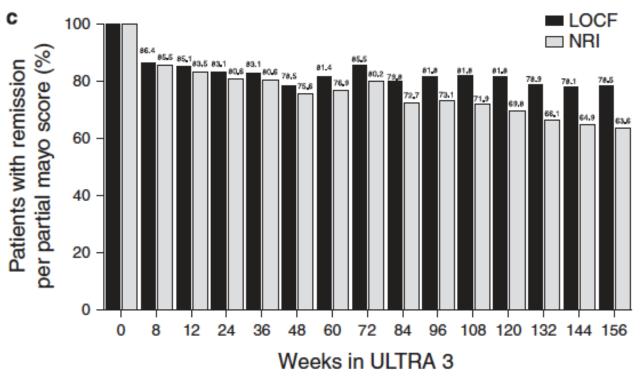


		related alizations	E	D visits	High charges (>\$30,000)		
Predictor variables	OR	95% CI	OR	95% CI	OR	95% CI	
On corticosteroids	1.80	1.25-2.61	1.54	1.09-2.17	1.89	1.29-2.79	
On narcotics	1.72	1.16-2.56	1.89	1.30-2.75	1.90	1.27-2.86	
Minimum Hgb (per g/dL)	0.88	0.01-0.95	0.90	0.83-0.97	0.89	0.81-0.97	
Total IBD-related hospitalizations	1.65	1.36-2.02	1.31	1.10-1.57	1.31	1.09-1.59	
Psychiatric illness	1.60	1.08-2.36	1.61	1.11-2.32	1.49	0.97-2.24	
Total OP encounters	0.80	0.70-0.91					
Age (per year)			0.987	0.978-0.997			
Diagnosis of CD			1.48	1.04-2.11			
Maximum CRP (per mg/L)					1.03	1.00-1.06	

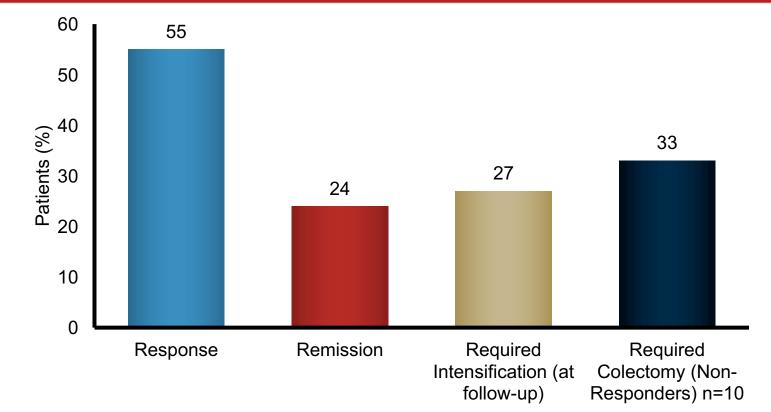
Limsrivilai J, et al. Clin Gastroenterol Hepatol. 2017;15(3):385-392.



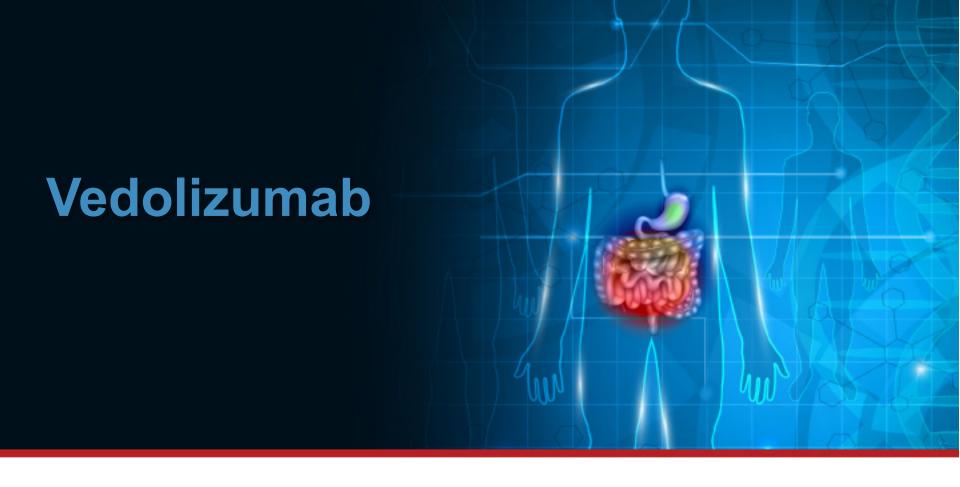
ACT 1 and 2: Open Label Infliximab Extension Studies in UC (N = 229)


Reinisch W, et al. Inflamm Bowel Dis. 2012;18(2):201-211.

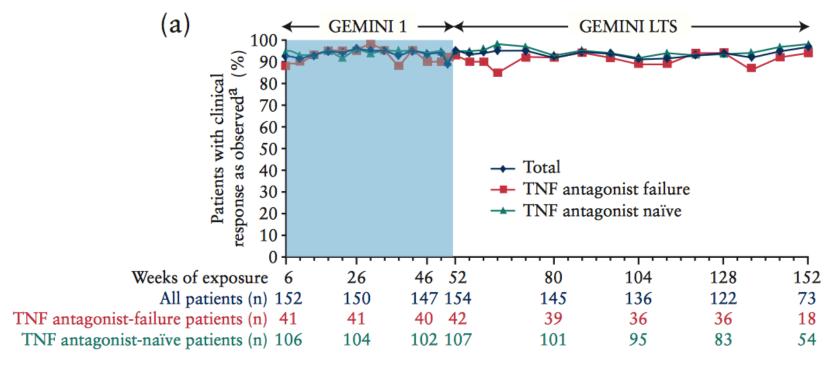
Relapse Risk After Infliximab Discontinuation and Continued Use of 5-ASA or Thiopurines (N=193)


Fiorino G, et al. Clin Gastroenterol Hepatol. 2016;14(10):1426-1432.

Open Label Adalimumab Maintenance of Remission in UC for 3 years

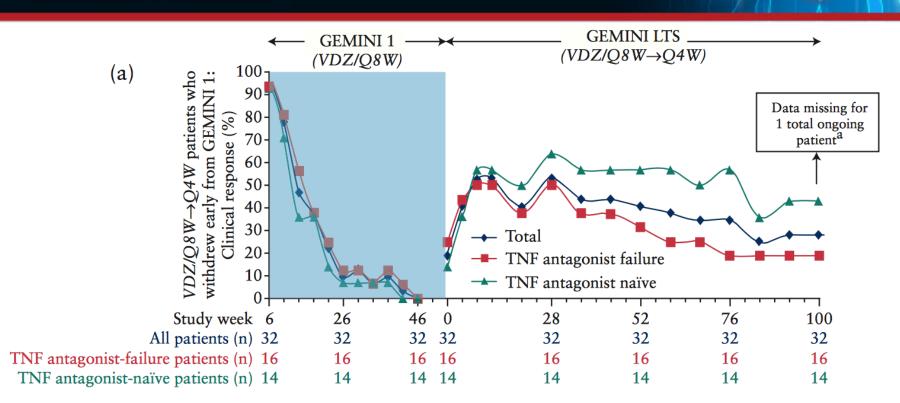

LOCF, last observation carried forward; NRI, nonresponder imputation Colombel JF, et al. *Am J Gastroenterol*. 2014;109:1771-1780.

Real-World Effectiveness of Golimumab in UC



N = 33
Patients
followed to
14 weeks
3/10 nonresponders
needed a
colectomy

Bosca-Watts MM, et al. World J Gastroenterol. 2016;22(47):10432-10439.



Vedolizumab 3-Year Real World Efficacy Data

Loftus EV, et al. *J Crohns Colitis*. 2017;11(4):400-411.


Proportion of Patients Who Experience Maintenance Dose Escalation in Real World Clinical Practice

Loftus EV, et al. *J Crohns Colitis*. 2017;11(4):400-411.

SMART Goals

- Mucosal healing is an important clinical endpoint, as patients can be in clinical remission and still have evidence of active disease
- Treatment strategies for UC should extend beyond symptomatic remission and promote mucosal healing
- Real-world data indicates that biologics are an important component in promoting mucosal healing in UC and have varying degrees of efficacy in achieving clinical remission, clinical response, and sustained remission

Supplement List of References

- 1. D'Haens G. *Gastroenterology.* 2007;132:763-786.
- 2. Rao SS, et al. *Gut.*1988;29:342-245.
- 3. Truelove SC, et al. 1955;2:1041-1048.
- 4. Annese V, et al. *J Crohns Colitis*. 2013;7:982-1018.
- 5. Bitton A, et al. *Am J Gastroenterol*. 2012;107:170-194.
- 6. Sandborn WJ, et al. *Gastroenterology*. 2012;143:1218-1226. e1-2.
- 7. Lennard-Jones JE, et al. *Gut*. 1962;3:207-210.
- 8. Dignass A, et al. *J Crohns Colitis*. 2012;6:991-1030.
- 9. Khan KJ, et al. *Am J Gastroenterol.* 2011;106:630-642.
- 10. Sandborn WJ, et al. *Gastroenterology*. 2012;142-257-265 e1-3.
- 11. Rutgeerts P, et al. N Engl J Med. 2005;353:2462-2476.
- **12.** Sandborn WJ, et al. *Gastroenterology*. 2014;146:96-109 e1.
- 13. Feagan BG, et al. *N Engl J Med*.2013;369-699-710.
- 14. Panaccione R, et al. Gastroenterology. 2014;146:392-400 e3.
- 15. Reinisch W, et al. *Gut*. 2011;60;780-787.
- 16. Sandborn WJ, et al. *Gastroenterology*. 2014;146:85-95; quiz e14-15.

Symptoms Assessed by Mayo Score Criteria (Clinical Trials)

- Normal number of stools
- 1 to 2 stools per day more than normal
- 3 to 4 stools more than normal
- ≥5 stools more than normal

Rectal bleeding

- No blood seen
- Streaks of blood with stool less than half the time
- Obvious blood with stool most of the time
- Blood alone passes

Classification of UC Severity

MODERATE

• ≥4 stools/day + blood <4 stools/day • Minimal signs of

toxicity

+ blood Normal ESR

 No signs of toxicity

• >6 bloody stools/day

SEVERE

- Evidence of toxicity:
 - Fever
 - Tachycardia
 - Anemia
 - ↑ ESR

FULMINANT

- >10 stools/day
- Continuous bleeding
- Toxicity
- Abdominal tenderness/distension
- Transfusion requirement
- Colonic dilation on x-ray

ESR, erythyrocyte sedimentation rate

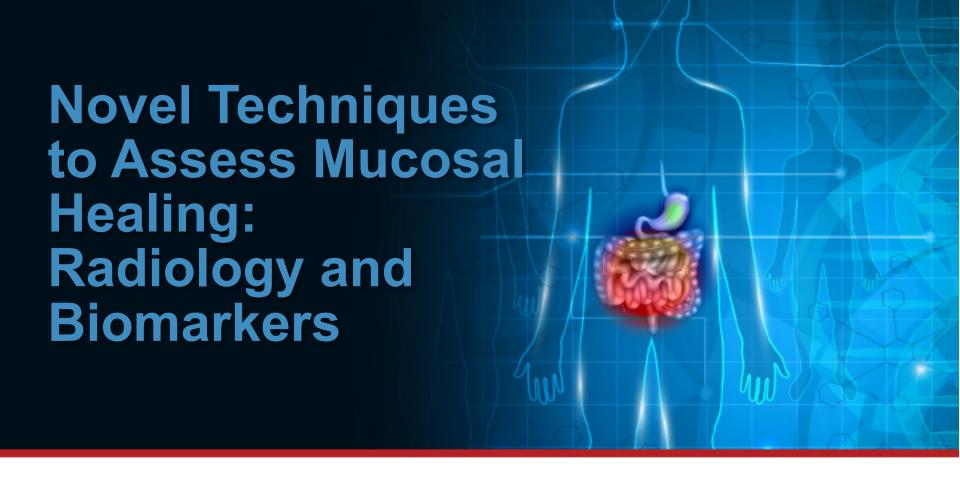
MILD

Kornbluth A, et al. *Am J Gastroenterol*. 2010;105(3):501-523.

Endoscopic Severity of Disease

What We Know—Healing the Mucosa in UC Patients is Associated With:

- Improved quality of life
- Reduction in hospitalization
- Decreased colectomies
- Decrease in dysplasia and colorectal cancer


Interpreting Discordance of Clinical Remission and Mucosal Healing

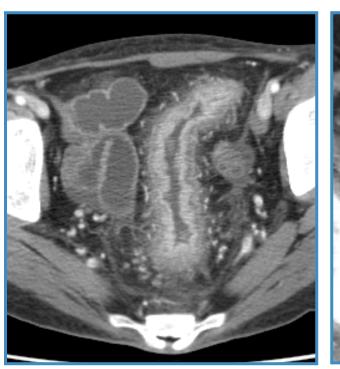
	MH+	MH-
Clinical Remission +	"True remission" (deep remission)	 Placebo response? Other pharmacologic effect? Lag time between MH and symptoms?
Clinical Remission -	 Other conditions driving symptoms (eg, irritable bowel syndrome) 	True lack of response
	 Irreversible disease complications driving symptoms (eg, fibrosis, "lead pipe" rectosigmoid) 	

Sandborn W, et al. Available at http://gi.org/wp-content/uploads/2012/02/FDA-ACG-IBDWorkshopOct2011.pdf. Accessed March 20, 2017.

Evolved Goals of Management of IBD

- Early and accurate diagnosis
- Rapid induction of clinical remission
- Stable, sustained maintenance of remission
 - Steroid-free
 - Recognition of the value of a healed mucosa (deep remission)
- Modified natural history and long-term outcomes of the disease
 - Reduce hospitalization
 - Avoid surgery or repeat surgery
 - Eliminate disability

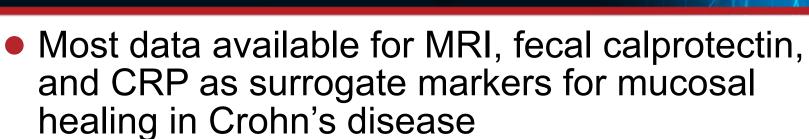
Surrogate Markers for Mucosal Healing


- Radiology
- Capsule endoscopy
- Serologic markers
- Fecal markers

Radiographic Mucosal Healing

- Is healing of the superficial mucosa "too little" and "too partial?"
- Is radiographic transmural healing BETTER than endoscopy?
- Modalities include CT, MRI, ultrasound, PET-CT, and scintigraphy (SPECT)
- Diagnostic accuracy about the same across modalities

Significantly Active Disease Is Easier Than Assessing for Mucosal Healing



Courtesy of E. Loftus, Jr., MD.

Summary: Surrogate Markers for Mucosal Healing

- More accurate in distinguishing severely active disease (from less active or remission)
- Fecal calprotectin may be more accurate to distinguish mildly active from "healed" mucosa
- Likely a combination of markers (index) will yield the highest accuracy

Corticosteroids

- Fast-acting¹
- Oral steroid ± 5-ASA for moderate to severe active IBD
- Rectal or IV delivery if necessary
- Given only to achieve remission not appropriate for maintenance due to risk of serious side effects:^{2,3}
- Adrenal suppression and metabolic disturbances, including diabetes

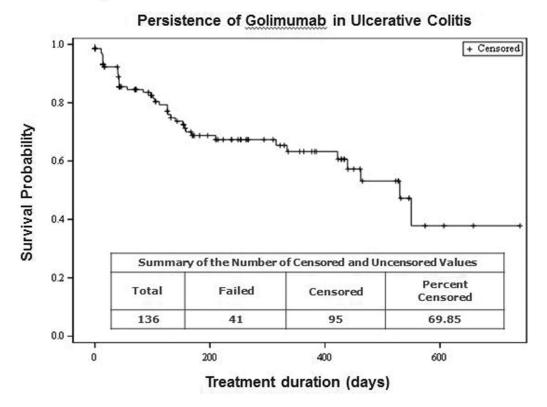
¹Crohn's & Colitis Foundation of America. Available at http://www.ccfa.org/corticosteroids-2013.pdf. Accessed March 23, 2017.; ²Present DH. *Inflamm Bowel Dis.* 2000;6(1):48-57.; ³Rutgeerts PJ. *Aliment Pharmacol Ther.* 2001;15(10):1515-1525.

Immunomodulators

- Thiopurines: Azathioprine* and 6-mercaptopurine*
 - Used to maintain remission in UC of any severity^{1,2}
 - Slow onset of action (6–12 weeks), often given with corticosteroid or combination anti-TNF; SAEs include pancreatitis, bone marrow suppression
- Methotrexate*:
 - Not proven effective in UC¹
 - Absolutely contraindicated in pregnancy; SAEs include bone marrow suppression, acute and chronic liver toxicity, serious infection³
- Cyclosporine*:
 - IV for acute, severe, steroid-refractory UC⁴

^{*,} azathioprine, 6-mercaptopurine, methotrexate, and cyclosporine not FDA-approved for moderate-to-severe ulcerative colitis 1 Kornbluth A, et al. *Am J Gastroenterol*. 2010;105(3):501-523; 2 Lichtenstein GR, et al. *Am J Gastroenterol*. 2009;104(2): 465-483; 3 Methotrexate injection USP [package insert]. Drugs@FDA Website. 2011. 4 Campbell S, et al. *Eur J Gastroenterol Hepatol*. 2005;17(1):79-84.

Comparison of Real-World Outcomes of Adalimumab and Infliximab in UC


Adalimumab, n = 380 Infliximab, n = 424 No prior anti-TNF therapy, history of Crohn's disease, or colectomy

	Follow-up week1	Adalimumab ²	Infliximab ²	P-value (Log-rank) ³
	8 weeks	10.7%	8.2%	0.2240
Probability of	12 weeks	21.2%	18.3%	0.3180
achieving	16 weeks	30.3%	28.2%	0.4947
remission	20 weeks	41.0%	38.3%	0.4253
	24 weeks	45.3%	44.3%	0.6721
	8 weeks	11.3%	10.0%	0.5415
	12 weeks	19.8%	18.5%	0.6203
Probability of	16 weeks	28.9%	27.4%	0.6225
no rectal bleeding	20 weeks	40.8%	39.4%	0.6556
	24 weeks	45.2%	45.1%	0.8767
	8 weeks	7.0%	6.1%	0.6437
Probability of	12 weeks	12.8%	13.2%	0.8863
normal stool	16 weeks	20.3%	19.8%	0.8695
count	20 weeks	27.8%	28.1%	0.9342
	24 weeks	32.6%	33.0%	0.9107
	8 weeks	4.7%	4.3%	0.7682
	12 weeks	11.3%	10.7%	0.8097
Probability of	16 weeks	17.7%	17.4%	0.9417
Normal PGA score	20 weeks	25.3%	25.3%	0.9935
	24 weeks	30.6%	29.6%	0.8136

¹Weeks after index date; ²Probability of achieving parameter to each of the assessment points after the index date; ³The log-rank tests for the homogeneity of the results from the index date to each of the assessment points after the index date. PGA, physician's global assessment.

Sandborn WJ, et al. Curr Med Res Opin. 2016;32(&):1233-1241.

Persistence with Golimumab Therapy in Responders

N = 136
72% anti-TNF naïve
63% remained on
therapy after 1 year
3.6% required dose
optimization

Bressler B, et al. J Crohns Colitis. 2016;10(Suppl 1):S396.

Proportion of Patients Who Experience Maintenance Dose Escalation (DE) in Real-World Clinical Practice

	180-day <i>i</i>	Analysis	210-day Analysis			
	VDZ (n = 101)	IFX (n = 228)	VDZ (n = 96)	IFX (n = 213)		
Dose Escalation	4.0%	21.5%	5.2%	25.8%		
With Prior Biologic Treatr	ologic Treatment					
	VDZ (n = 71)	IFX (n = 27)	VDZ (n = 68)	IFX (n = 24)		
Dose Escalation	5.6%	25.9%	5.9%	29.2%		
Without Prior Biologic Tre	eatment					
	VDZ (n = 30)	IFX (n = 201)	VDZ (n = 28)	IFX (n = 189)		
Dose Escalation	0%	20.9%	3.6%	25.4%		

p < .05 for all.

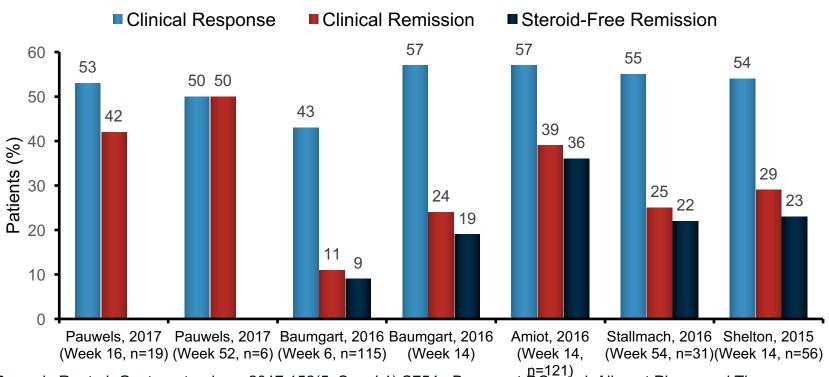
DE = Received ≥2 maintenance infusions with a higher dose or within a shortened interval of 7-52 days

DE (sensitivity analysis) = Interval of 7-45 days

Khalid JM, et al. Am J Gastroenterol. 2016;111(suppl 1):S316.

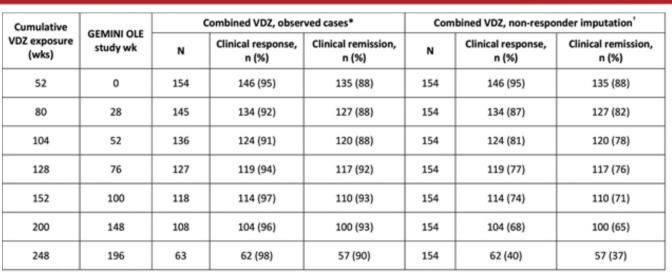
Risk of Lymphoma Associated with Immunomodulators

- 20,802 IBD patients
- 35% thiopurines and 4.8% anti-TNF
- 1 Hodgkin disease, 16 Non-Hodgkin Lymphomas (NHL)
- Compared to expected number in FANCIM registry
 - SIR IBD vs. Controls = 2.07 (1.2-3.3) for NHL
- Among 16 NHL, 3 naïve to immunomodulators
- 7 of 11 patients where were tested for Epstein-Barr virus were POSITIVE


Efficacy of Thiopurines for Induction of Remission in UC

	AZA/N	MP	Contro	l		Odds rati	0			0	dds ra	atio		
Study or subgroup	Events	Total	Events	Tota	al Weight	M-H, Rand	dom, 95% C	1				m, 95% Cl		
Caprilli 1975	6	10	8	10	17.0%	0.38 [0.05,	2.77] ←				\pm			
Jewell 1974	31	40	27	40	35.4%	1.66 [0.61,	4.48]			-	+	-	-	
Mate 2000	11	14	2	8	16.5%	11.00 [1.42,	85.20]							-
Sood 2000	17	25	16	25	31.1%	1.20 [0.37,	3.86]				•			
Total (95% CI)		89		83	100.0%	1.59 [0.59,	4.29]			_	-			
Total events	65		53											
Heterogeneity: τ^2 =				P = (0.13); I ² :	= 47%		A 1		0.5	+			10
Test for overall effe	ct: $Z = 0.9$	91 (P=	= 0.36)					0.1	0.2	0.5	1	2	5	10
									Favo	urs control		Favours A	ZA/MP	

Efficacy of Thiopurines for Maintenance of Remission in UC


	AZA/MP Control Peto Odd rati		tio			Peto Od	Odd ratio						
Study or subgroup	dy or subgroup Events Total Events Total Weight Peto, Fixed, 95% CI						Peto, Fixed, 95% CI						
Ardizzone 2006	19	36	7	36	30.7%	4.16 [1.60,	10.80]				-	-	
Jewell 1974	16	31	9	27	26.2%	2.08 [0.74,	5.84]			_	-		
Mate 2000	7	11	0	2	3.3%	10.63 [0.58,	193.89]			1 7	1	7	
Sood 2000	14	17	10	16	12.3%	2.64 [0.58,	11.94]						
Sood 2002	13	17	8	18	15.7%	3.66 [0.96,	13.87]						
Sood 2003	5	12	8	13	11.8%	0.47 [0.10,	2.17]				-		
Total (95% CI)		124		112	100.0%	2.56 [1.51,	4.34]						
Total events	74		42										
Heterogeneity: χ^2 =	7.06, df	= 5 (P	= 0.22)	12 =	29%		-	-			1	-	-
Test for overall effect								0.1	0.2 Favor	0.5 urs control	1 2 Favours A	5 AZA/MP	10

Real-World Efficacy of Vedolizumab

Pauwels R, et al. Gastroenterology. 2017;152(5, Suppl 1):S754; Baumgart DC, et al. Aliment Pharmacol Ther. 2016;43(10):1090-1102; Amiot A, et al. Clin Gastroenterol Hepatol. 2016;14(11):1593-1601; Stallmach A, et al. Aliment Pharmacol Ther. 2016;44(11-12):1199-1212. Shelton E, et al. Inflamm Bowel Dis. 2015;21(12):2879-2885.

Effectiveness Outcomes in Patients with UC and Cumulative Vedolizumab Exposure for Up to 248 Weeks

^{*}Number of patients in clinical response or remission (n) over number of observed cases (N) at study visit

Clinical response was defined as a decrease in PMS of ≥2 points and ≥25% change from baseline, with either an accompanying decrease in rectal bleeding subscore of ≥1 point from baseline or an absolute rectal bleeding subscore of ≤1 point. Clinical remission was defined as a PMS of ≤2 with no individual subscore >1

OLE, open-label extension; PMS, partial Mayo Score; UC, ulcerative colitis; VDZ, vedolizumab; wk, week

Loftus EV, et al. J Crohns Colitis. 2017;11(suppl 1):S182-S183. doi:10.1093/ecco-jcc/jjx002.334

¹Patients without available data (for reasons including discontinuation and patients ongoing in the study who have not yet reached specified assessment time points) were included as non-responders